Near-real-time ash cloud height estimation based on GOES-16 satellite imagery A case study of the 2022–2023 eruption of Cotopaxi volcano, Ecuador
Main Article Content
Abstract
Timely acquisition of ash cloud heights is crucial for aviation safety and forecasting volcanic ash dispersion and fallout. Since visual observations are not always available, we assess the suitability of retrieving ash cloud heights from brightness temperature and plume direction observed in GOES-16 satellite imagery, VOLCAT
solutions, and Washington-VAAC advisories during the 2022–2023 eruption of Cotopaxi volcano, Ecuador. We find that these satellite-derived height estimates consistently yield lower values than visual cameras. While the plume direction method and Washington-VAAC advisories produce the closest approximations, they also exhibit significant deviations. Remarkably, the brightness temperature method, despite producing the lowest height values, shows the best linear regression with visual observations. Near-real-time retrieval of ash cloud height from GOES-16 imagery is a promising alternative to direct visual observation, particularly at night, in adverse weather, or for remote volcanoes, especially if improvements, such as incorporating high-resolution local meteorological models, are introduced.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© The Author(s).
Submission of an original manuscript to Volcanica will be taken to mean that it represents original work not previously published, and not being considered for publication elsewhere.
The Creative Commons Attribution 4.0 International License permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Accepted 2024-06-04
Published 2024-06-21