Accurate hindcasting of explosive eruptions at Whakaari, New Zealand Banded tremor precursors for future forecasts
Main Article Content
Abstract
Phreatic eruptions are small, sudden events, commonly with few precursory signals. They are driven by interactions between magmatic and hydrothermal processes at shallow levels beneath the surface. Here we show that a sequence of banded tremor events, which occurred several weeks before the 9 December 2019 eruption of Whakaari (White Island), New Zealand, can be used to hindcast this eruption. The banded tremor sequence reveals a progressively decreasing time interval between tremor bands. Extrapolating the tremor bands to a time interval of zero provides an accurate estimate, at least one week prior to the eruption, to within 10.2 hours of when the eruption would occur, with a 2.8-day range between 95 % confidence intervals. A similar set of tremor signals appeared before the 27 April 2016 eruption, and these signals provide a very accurate hindcast of this eruption to within 2.61 hours, with a 2.2-day range between 95 % confidence intervals. Our analysis indicates that this potential forecasting approach may prove useful for successfully and accurately forecasting future eruptions at Whakaari. The approach also may be applicable to other volcanoes similar to Whakaari which experience sudden phreatic and phreatomagmatic eruptions.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© The Author(s).
Submission of an original manuscript to Volcanica will be taken to mean that it represents original work not previously published, and not being considered for publication elsewhere.
The Creative Commons Attribution 4.0 International License permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Accepted 2023-12-11
Published 2024-03-12