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ABSTRACT

Volcano seismicity is often detected and classified based on its spectral properties. However, the wide variety of volcano seis-
mic signals and increasing amounts of data make accurate, consistent, and efficient detection and classification challenging.
Machine learning (ML) has proven very effective at detecting and classifying tectonic seismicity, particularly using Convolutional
Neural Networks (CNNs) and leveraging labeled datasets from regional seismic networks. Progress has been made applying ML
to volcano seismicity, but efforts have typically been focused on a single volcano and are often hampered by the limited availabil-
ity of training data. We build on the method of Tan et al. [2024] (10.1029/2024JB029194) to generalize a spectrogram-based
CNN termed the VOIcano Infrasound and Seismic Spectrogram Neural Network (VOISS-Net) to detect and classify volcano
seismicity at any volcano. We use a diverse training dataset of over 270,000 spectrograms from multiple volcanoes: Pavlof,
Semisopochnoi, Tanaga, Takawangha, and Redoubt volcanoes (Alaska, USA); Mt. Etna (ltaly); and Kilauea, Hawai'i (USA). These
volcanoes present a wide range of volcano seismic signals, source-receiver distances, and eruption styles. Our generalized
V0ISS-Net model achieves an accuracy of 87 % on the test set. We apply this model to continuous data from several volcanoes
and eruptions included within and outside our training set, and find that multiple types of tremor, explosions, earthquakes, long-
period events, and noise are successfully detected and classified. The model occasionally confuses transient signals such as
earthquakes and explosions and misclassifies seismicity not included in the training dataset (e.g. teleseismic earthquakes).
We envision the generalized vo1SS-Net model to be applicable in both research and operational volcano monitoring settings.

KeywoRrbps: Volcano Seismicity; Machine Learning; Tremor; Explosion.

1 INTRODUCTION Automated detection and classification of volcano seismicity
has long been a focus of geophysical research. In addition

Volcanoes produce a wide rang.e Of se.ismic signals [e.g. Mc- to traditional methods of earthquake detection and location
Nutt and Roman 2015]. These seismic signals are used to mon- le.g. Lahr 1989; Lomax et al. 2000; Klein 2002], seismologists
itor volcanic unrest in real-time and to study subsurface and ’ ’ ’

subaerial processes [e.g. Matoza and Roman 2022]. At many
volcanoes, seismic data are the backbone of the monitoring
network and the various types of volcano seismicity are of-
ten used to infer volcanic processes. For example, volcano-
tectonic (VT) events have been used to infer both the location
of dikes and ascending magma and fluids [e.g. Sigmundsson
et al. 2015; Power and Roman 2024]. Volcanic tremor is often
linked to subsurface magmatic and hydrothermal fluids, and
can be a key indicator of a pending volcanic eruption [McNutt
1996] or ongoing eruption in the case of “eruption tremor” [e.g.
McNutt and Nishimura 2008; Fee et al. 2017]. Similarly, dis-

often classify the various types of volcano seismicity by both
their spectral characteristics and signal duration. This can be
challenging due to the diverse seismicity present at volcanoes,
variable spectral characteristics as a function of distance and
direction from the volcano, and the subjective interpretation of
the seismic analyst. Additionally, increasing amounts of data
add workload challenges to the analyst.

Machine learning (ML), in particular deep learning, has re-
cently facilitated substantial progress in image classification,
as well as becoming nearly ubiquitous in technology. Marked

) = X - - advances have been made in seismology from ML [Mousavi
crete long-period (LP) seismic events provide key information . | Beroza 2022], including those that use spectrograms as

on fluid movement in various parts of the crust [e.g. Hotovec- images in classifying the type of seismicity [e.g. Linville et al.
Ellis et al. 2018]. Volcanic explosions can also be detected 2019; Kong et al. 2022; Maguire et al. 2024]. Although unsu-
in seismic data and provide valuable information on eruption pervised learning has been successful in some applications of
processes [e.g. Nishimura 1998}, volcano seismology [e.g. Steinke et al. 2023; Zali et al. 2024],
supervised learning allows trained experts to define the type
*& dfeel@alaska.edu of signal to be detected and classified, facilitating interpreta-
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Figure 1: Map of the six volcanoes and seismic stations used as case studies. [A] Semisopochnoi, Alaska; [B] Trident Volcano,

Alaska; [C] Kilauea, Hawai'i; [D] Great Sitkin Volcano, Alaska; [E] Mt. Etna, Italy; [F] Pavlof Volcano, Alaska. Gray circles indicate
the locations of the stations we use, and the red triangles are the recent eruptive vents. The figure was created using PyGMT

[Uieda et al. 2021].

tion and impact. One of the challenges of supervised ML is
the need for large, representative datasets to train the model.
Until recently these have been lacking for volcano seismicity,
with only a few examples [e.g. Malfante et al. 2018; Titos et al.
2019; Zhong and Tan 2024]. ML-based determination of qui-
escence versus unrest using extensive feature sets also shows
promise for identifying elusive eruptions precursors [Ardid et
al. 2022]. Previous work primarily applied neural networks
to cataloged volcano seismic events rather than continuous
data. A recent study by Tan et al. [2024] utilized deep learning
and tens of thousands of analyst-labeled spectrograms to con-
struct a model to detect and classify volcano seismicity and
infrasound at Pavlof Volcano, Alaska. Their model, termed
the VOlcano Infrasound and Seismic Spectrogram Network
(voISS-Net), defined six classes of seismic and infrasound sig-
nals which we build upon and define in Section 2. A human
analyst labeled thousands of spectrograms for each of these
classes, which were then used to train a Convolutional Neu-
ral Network (CNN) that was focused primarily on detecting
volcanic tremor. VOISS-Net can then be applied to continu-
ous seismic or infrasound data and produces both individual
station and network-wide classifications.

In this study we build on the work of Tan et al. [2024], here-
after referred to as T24, and develop an ML model that aims
to automatically detect and classify the main types of volcano
seismicity at any volcano. Our "generalized” VOISS-Net model
uses a similar architecture and labeled dataset to the original
VOISS-Net model, but similar to Lyons et al. [2025] adds in an

S

Presses universitaires de Strasbourg

LP class, tens of thousands more spectrogram labels for train-
ing from multiple volcanoes, and swaps out the T24 earth-
quake labels for local earthquakes. Our generalized model
also contains some key differences to the spectrograms and
image normalization strategies. After introducing the meth-
ods and data selection, we present six case studies applying
VOISS-Net to a diverse suite of seismic signals recorded at
volcanoes (Figure 1), and discuss some of the strengths and
limitations of applying the generalized model. Our model is
designed to ease seismic analyst burden and provide repeat-
able, fast methods to automatically detect and classify volcano
seismicity.

2 DATA AND METHODS

2.1 Data
2.1.1

We construct the spectrograms using vertical component seis-
mic data. We do not use all three components of the seismic
data as some stations we have trained and applied the model
to are only vertical component. All seismic data were resam-
pled to a 50 Hz sampling rate using ObsPy [Beyreuther et al.
2010]. The spectrograms are constructed by removing the in-
strument response and then using a 10 s Hann window with
90% overlap. We convert the spectral amplitudes to dB rel-
ative to 1 ms™?Hz~!. The spectrograms are then cropped
between 0.5-10 Hz. This frequency band was selected as it
encompasses the majority of volcano seismic energy and filters

Data processing and spectrogram construction
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Figure 2: Example test set spectrogram labels for each of the seven seismicity classes. Each row corresponds to a seismicity
class, indicated by its abbreviated name. Seven random spectrogram examples are plotted for each class, with the station
name indicated in the upper left. Class labels on the left are abbreviated as: Broadband Tremor (BT), Harmonic Tremor (HT),
Monochromatic Tremor (MT), Earthquake (EQ), Long Period (LP), Explosion (EX), and Noise (NO).

out lower frequency microseisms and some higher frequency
noise sources such as wind. The spectrograms are then split
into 2-minute windows and normalized between 0 and 1.

2.1.2  Seismic spectrogram classes

We build off T24 and define seven volcano seismicity classes
that are broadly defined by their spectral and temporal char-
acteristics:

1. Broadband Tremor (BT): long-duration (>2 min) signals
with a broad (>1 Hz) frequency peak below 5 Hz.

2. Harmonic Tremor (HT): long-duration signals (>2 min)
with multiple narrow-band (<1 Hz) overtones with energies
comparable to that of the fundamental tone.

3. Monochromatic Tremor (MT): long-duration (>2 min)
signals with a narrow-band fundamental tone and no ener-
getic overtones.

4. Earthquake (EQ): Local earthquakes with an impulsive
broadband onset and a lower frequency coda. Unlike T24, we
only use catalog-derived VT earthquakes.

5. Long Period event (LP): Transient (<2 min) signals with
frequencies confined between ~0.5-5 Hz.
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6. Explosion (EX): transient signals (seconds) which are re-
liably determined to be volcanic explosions either via (a) air-
ground coupled airwaves evident in seismic data, or (b) retro-
spective infrasound source location analysis [Fee et al. 2021].
Explosions often have a low frequency (<5 Hz) seismic onset
followed by a higher frequency air-ground coupled acoustic
wave.

7. Noise: catch-all class for any non-systematic variations
in seismic spectral signature and instances of quiescence
where no notable signal is observed.

These class definitions were used to guide analyst label-
ing and spectrogram generation. In this work we added the
LP class, as LP events are a common and often valuable vol-
cano seismic signal [McNutt 1996; Matoza and Roman 2022].
T?24 noted how multiple LP swarms at Pavlof were misclas-
sified, and they recommended an LP class be considered in
future work. Lyons et al. [2025] subsequently added an LP
class to a VOISS-Net model that successfully classified LP seis-
micity at Semisopochnoi volcano. We acknowledge the afore-
mentioned definitions do not encompass all volcano seismic-
ity characteristics and temporal and spectral variability exists
within and between classes. Figure 2 shows seven randomly
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Figure 3: Spectrogram class counts. [A] Matrix of class labels listed by volcano and our defined spectrogram classes. The
rightmost column is the total number of spectrogram for each volcano and bottom row the total number of spectrograms per
class. [B] Bar chart of class counts and balance between the training, test, and validation sets. Light gray portions indicate

augmented data. See text for details.

selected spectrograms from our test set for each seismicity
class.

2.1.3 Spectrogram data

Our labeled dataset consists of 273,766 2-minute spectrograms
from a variety of volcanoes and stations. Figure 3A shows a
heatmap of the number of spectrograms for each seismicity
class and volcano. The rightmost column represents the total
amount of labels for each volcano and bottom row the total
class counts for each seismicity class. Supplementary Mate-
rial 1 Figure S1 displays a map of the volcanoes and stations
used to construct the labeled dataset. As a baseline, we use the
labeled dataset of T24 from Pavlof Volcano’s 2021-22 erup-
tion, which had 35,382 4-minute spectrogram labels. We take
their labeled spectrogram pixel bounds and set the individual
spectrogram duration to 2 minutes (rather than 4). We choose
2 minute spectrograms to better capture transient signals, as
T24 was focused on longer duration tremor. See T24 for a de-
scription of the manual spectrogram labeling procedure. We
supplement these labels with a combination of analyst-derived
and automated spectrogram generation detailed below. Our
preference would be to have equal amounts of robust, labeled
signals for each class from each volcano. However, this is
not feasible due to the uniqueness of each volcano around the
world and the type of signals commonly observed. For exam-
ple, some volcanoes like Great Sitkin produce extensive VTs
but relatively few instances of tremor or explosions.

We integrate the substantial number of spectrogram labels
from Semisopochnoi volcano, Alaska, from Lyons et al. [2025].
Semisopochnoi experienced unrest and eruption intermit-
tently between 2018-2022, and this long-lived phreatomag-
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matic eruption produced a wide variety of seismoacoustic
signals recorded on a local monitoring network (Figure 1A).
Lyons et al. [2025] labeled seismic data into the same seven vol-
cano seismicity classes between 0.5-20 Hz on the east chan-
nel to create 97,456 4-minute spectrogram labels. They used
a novel implementation of the REDPy repeating event detec-
tor [Hotovec-Ellis and Jeffries 2016] to detect and catalog ex-
plosions, and, similar to T24, they used infrasound location
algorithms [Fee et al. 2021] to confirm REDPy infrasound ex-
plosion detections and guide labeling of explosions in seismic
data. Here we incorporate the Lyons et al. [2025] labels but
trim the spectrograms to 2 minutes, 0.5-10 Hz, and use the
vertical channel to ensure consistency with our other labels.

The labeled LP class consists of 5359 spectrograms from
Semisopochnoi, 3869 from Mount Veniaminof, 452 from Mt.
Etna, and 298 more from Pavlof Volcano (Figure 3A). All but
the Mt. Etna LPs were hand-labeled by an analyst on spec-
trograms. For Mt. Etna, we use LP events detected using
the methodology of Cannata et al. [2013] that had high signal-
noise ratio (SNR) at stations EMFO and ECPN, and select a
random two minute window surrounding the LP onset. We
enforce the start time to be at least 20 s from the end of the
spectrogram to fully capture the waveform coda. The Mount
Veniaminof LPs were labeled in data from September 2018.

We construct the VT earthquake spectrogram labels from
a diverse set of volcanoes and stations. Since we have ro-
bust, validated seismic catalogs [e.g. Power et al. 2019], we
use these to help build our spectrogram labels rather than
hand-labeling spectrograms. The earthquake class in T24 pri-
marily consisted of regional seismicity from the nearby M8.2
Chignik earthquake and aftershocks. For this study we are
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interested in training the model to detect spectral charac-
teristics of VT earthquakes occurring near the volcano, so
we disregard the T24 earthquake labels. Additionally, we
discard the earthquake labels from Lyons et al. [2025], as
we found many of them to contain somewhat atypical spec-
tra, perhaps representing hybrid seismic events [Lahr et al.
1994]. Instead we use data from three volcano seismic net-
works and time periods (Supplementary Material 1 Figure S1):
three short-period stations (REF, RDN, RSO) near Redoubt
Volcano, Alaska, between January 1-March 22, 2009; five
broadband stations (UWE, HAT, WRM, RIMD, PUHI) near
Kilauea Volcano, Hawai', between January 1-December 31,
2020; and two broadband stations (TANO, TASE) near Tanaga
and Takawangha (T'T) Volcanoes, Alaska, between November
18, 2022—July 18, 2023. We use earthquakes with depths be-
tween 0-30 km, within a 15 km radius from the volcano (20
km from the mean location of Tanaga and Takawangha Volca-
noes), and magnitudes above M; 0.0 for Redoubt Volcano and
Kilauea and M; 1.0 for Tanaga and Takawangha Volcanoes.
Similar to LPs for Mt. Etna, we randomize the start time of
the 2-minute spectrogram window and leave at least 20 s after
the origin time to encompass the earthquake. To ensure suffi-
cient signal-noise, we compute the Short-Term Average/Long-
Term Average (STA/LTA) on filtered data between 0.8-5 Hz
using values of 1 and 10 s, respectively. We only keep earth-
quakes with STA/LTA above 4, which produce relatively high
signal-noise ratio (SNR) earthquake spectra. Many of our se-
lected earthquakes occur within two minutes of each other. In
this situation we keep the entire overlapping window but do
not create unique spectrograms for each event. Multiple earth-
quakes in a 2-minute window is a relatively common occur-
rence at volcanoes [McNutt and Roman 2015] so we want the
ML model to be able to detect these in other data. This pro-
cess results in 13,218 total Earthquake spectrogram labels, in-
cluding 3477 for Redoubt Volcano, 4321 for Kilauea, and 5420
for Tanaga and Takawangha Volcanoes (Figure 3A). These
Earthquake labels are by no means comprehensive, but the
variable seismicity rates, magnitudes, depths, source-receiver
distances, instrumentation, etc. provide a reasonable sample
of VT seismicity recorded at volcanoes worldwide (Figure 2).
The earthquake catalogs were produced by the Alaska Vol-
cano Observatory (AVO) [Power et al. 2019] and Hawaiian
Volcano Observatory (HVO) as part of the Advanced National
Seismic System (ANSS) Comprehensive Earthquake Catalog
(ComCat) [US. Geological Survey 2017]. The earthquakes
were all hand-picked and located by experienced analysts on
3 component seismometers. We exclude traditional LP events
identified by the analyst. Notably, the three Redoubt Volcano
stations are all short-period stations while the others are all
broadband.

T?24 had relatively sparse numbers of labeled Explosions
(846) and Harmonic Tremor (886) spectrograms. This re-
sulted in relatively small test and validation sets (169 per class)
(see T24 Supplementary Material 1 Figure S3) which can bias
the ML model to a small number of examples and result in
overfitting. We therefore supplement both of these classes.
The addition of spectrogram labels from Semisopochnoi from
Lyons et al. [2025] added 2818 explosions. In total we
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have 3641 explosion spectrograms from Pavlof Volcano and
Semisopochnoi (Figure 3A). We sought out additional exam-
ples of harmonic tremor from previous studies. We selected
Mount Veniaminof, Alaska [De Angelis and McNutt 2007,
Cameron et al. 2023] and Popocatepetl, Mexico [Roman 2017,
which both contained clear, high SNR harmonic tremor in
data that are publicly available. We hand-labeled 6 days of
harmonic tremor and LPs from 7 stations (VINSS, VNWEF,
VINFG, VNHG, VNNF, VNKR, VNSW) at Mount Veniaminof
from September 2018, resulting in 1602 Harmonic Tremor la-
bels. We also labeled 3 months of harmonic tremor from 4
stations (ZACA, NEXP, HSHT, BIBI) near Popocatepetl, guided
by the harmonic tremor catalog of Roman [2017], to produce
an additional 1825 Harmonic Tremor labels (Figure 2, 3). This
labeling, along with 425 labels from Semisopochnoi and 1736
from Pavlof Volcano after splitting the spectrogram duration
to 2 minutes, resulted in 5280 Harmonic Tremor labels.

Broadband Tremor, Monochromatic Tremor, and the Noise
class labels all come from Pavlof Volcano and Semisopochnoi.
The respective class counts are 51,828, 9239, and 180,274 (Fig-
ure 3).

2.2 Methods
2.2.1

Our ML model architecture and training closely follows that
of T24. The architecture is fairly standard for a CNIN and
consists of three convolution and max-pooling layer pairs, a
flattening operation, and three dense layers, the last of which
is a softmax classification layer (Figure 4). Since we choose
to use 2-minute-long spectrograms, each spectrogram has a
shape of 94 x 120 pixels. The convolutional layers have 32, 64,
and 128 filters and a 3 X 3 kernel size and 1 X 1 kernel stride.
We implement dropout lagers during training [Srivastava et al.
2014] at a rate of 0.2 for the flattened layer and 0.5 after each
dense layer to reduce overfitting. The model has 298,119 total
and trainable parameters, which is within the same order of
magnitude as our number of labeled spectrogram samples.
Prior to model training, we balance our training and valida-
tion classes as there is moderate imbalance within our training
dataset (Figure 3B), with many more Broadband Tremor and
Noise samples than the other classes. We train our model us-
ing a 60/20/20 training, test, and validation split. The Explo-
sion class has the lowest number of samples (3641), therefore
we randomly select 728 (20% of 3641) from each seismicity
class to obtain balanced test and validations sets. This pro-
cedure results in 5096 total samples for the balanced test and
validation sets respectively, in contrast to 1014 total samples
in T24 (169 per class). Next, similar to T24, we augment spec-
trograms in the Harmonic Tremor, Monochromatic Tremor,
Long Period, and Explosion classes to correct for imbalance.
We do so by summing 80 % and 20 % of the spectrogram am-
plitudes from random training and noise spectrograms, re-
spectively, in an element-wise manner. This is presumably
adding in random but real noise. T24 augmented with 35%
noise. The augmentation is performed until each class size
meets the Earthquake class size of 13,218 (Figure 3B, dashed
horizontal line). We initiate training using the Categorical
Cross Entropy loss function [Goodfellow et al. 2016] in Tensor-

Model architecture and training
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Figure 4: Generalized VOISS-Net architecture. Two minute spectrograms are input into a 3 layer Convolutional Neural Network
with max-pooling and flattening layers. Dropout is only implemented during training.

flow [Abadi et al. 2016]. We use the Adam optimizer [Kingma
and Ba 2017] with a learning rate of 0.0002. We explored dif-
ferent learning rates but did not find noticeable improvements
in model performance. During training, spectrograms are in-
put into the model in batches of 100 and we implement early
stopping after 20 epochs without a decrease in validation loss
(Figure 5A). A notable difference in our training compared to
T24 is that we do not standardize each spectrogram with a
running mean and variance [loffe and Szegedy 2015] prior to
min-max scaling. We view spectrogram standardization as a
strategy best reserved for models dedicated to a single volcanic
network, as it removes site-specific spectral features prior to
classification. Our generalized model is transferred between
numerous volcanic networks, and we find that standardiza-
tion impedes model performance instead. We therefore opt
to only min-max scale each spectrogram’s amplitude values
to 0 to 1 prior to forward feeding, similar to Maguire et al.
[2024]. Table 1 lists our model hyperparameters in compar-
ison to T24. We trained our model using an NVIDIA L40S
GPU card, and it took approximately 33 minutes to converge.

Our model converged with a test set accuracy of 87 % after
39 epochs. Precision, recall, and F1 scores are all similar. Fig-
ure 5 shows the validation accuracy and loss curves, as well
as the confusion matrix on the test set. The validation ac-
curacy and loss curves show a gradual, smooth increase and
decrease, respectively, with each additional epoch, suggesting
that we are not over- or under-fitting the data significantly.
The confusion matrix displays the true label (y-axis) versus
the predicted label (x-axis) ratio for each class within the test
set. For a perfect classification, the diagonal values would all
be at 1.0 (100 %). Our confusion matrix shows relatively high
classification accuracies for all classes but with a somewhat
bimodal distribution. Examining the diagonal of Figure 5C
we see the Harmonic Tremor (91 %), Monochromatic Tremor
(92 %), Earthquake (97 %), and Noise (92 %) classes have high
prediction accuracies, while the Broadband Tremor (78 %), LP
(83%), and Explosion (75 %) classes have lower prediction ac-
curacies. Supplementary Material 1 Table S1 presents the
precision, recall, and accuracy for each class. Notably, Broad-

S

Presses universitaires de Strasbourg

band Tremor has a low precision (0.76). This suggests it has a
higher false positive rate, perhaps related to other classes (e.g.
Noise) with similar characteristics. The Explosion class also
has a low recall of 0.75 we discuss in Section 4.1.

We evaluated model convergence and performance by
adding in 1 and 2 additional convolutional layers, changing
the kernel size to 2 X 2 and 2 x 3, implementing global av-
erage pooling rather than flattening, and exploring different
dropout rates. None of these changes produced notable im-
provements in convergence, accuracy, or qualitative classifica-
tion improvements when the subsequent model was applied
to real data. As expected, we found that the most notable
changes in model performance are related to the spectrogram
labels, and hence that is where we focus much of our efforts
(Section 2.1).

2.2.2 Model implementation

Once trained, we can apply the VOISS-Net model to seismic
data from any number of stations at a volcano. We nomi-
nally read in data from an International Federation of Digital
Seismograph Networks (FDSN) web service client. The data
for each station is classified independently by first being split
into 2-minute windows with a specified overlap (50% in this
study). We compute the spectrogram in the same manner as
for the labels in Section 2.1. VOISS-Net then predicts one of
the seven classes for each station’s spectrogram for each time
step. Each prediction has an associated softmax probability
between 0-1, which provides a measure of confidence in the
classification. Similar to T24, we then use a network “voting”
scheme that 1) computes the average probabilities for each
class for the “network” of stations and then 2) chooses the class
with the highest average probability as the “network vote”.
We have found the network vote process often removes sta-
tion outliers and poor classifications. The network-averaged
probability, or Pporm, is used as a confidence and threshold
metric. In this study, we discard the network classification if
Prorm is below 0.4 for that time segment, which often corre-
sponds to disagreement across network stations or model un-
familiarity with the observed signal. We choose a threshold
of 0.4 based on manual testing and evaluation of the results,
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Table 1: Comparison of hyperparameters between our generalized model and T24. Differences between the hyperparameters

are highlighted in bold.

Hyperparameter Generalized Model T24
Spectrogram duration 120 s 240 s
Image size 94 x 120 94 x 240
Batch size 100 100
Patience 20 20
Number of convolutional layers 3 3
Rernel Size 3x3 3x3
Stride 1x1 1x1
Activation function ReLU ReLLU
Learning Rate 0.0002 0.0005
Drobout 0.2 (flattened), 0.2 (flattened),
p 0.5 (dense) 0.5 (dense)
Optimizer Adam Adam
L. ) Normalized and removed
Image standardization Normalized . .
running mean and variance
A)y o . B) Q) 1.0
E Broa_lt_:lband ﬁ 0.03 0.06 0.01 0.01 0.07 0.04
f’f""’-’ remor
; Harmonic | ¢ 5 0.06 0.00 0.01 0.00 0.00 0.8
! Tremor
! Monochromatic ] 5 g3 PN 0.00 0.00 0.01 0.00
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< | = - 0.4
: Long 10,04 0.01 0.00 0.01 [EEN 0.07 0.04
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—— Training i
Validation | )
- Early Stop | Noise 4 0.03 0.00 0.00 0.00 0.02 0.02 ¥
00 T T l T T T ‘l T T T T ] T T e 00
0 20 40 60 0 20 40 60 e, -\(, & @ N
& G
Epoch Epoch © Q0\9°<\°6 \o""\ &
e,Q\ &@ c,ﬂ(@ < qj’q

Predicted Label

Figure 5: Model training results. [A] Validation accuracy and loss curves and [B] test set confusion matrix. The accuracy and loss
curves display gradual, smooth increases and decreases, respectively, with each additional epoch. Early stopping is indicated by
the dashed vertical line. [C] The confusion matrix shows the true versus predicted label for the test set. Diagonals indicate the
true positive ratio. Overall the model does well at classifying all the classes, with lower predication accuracy for the Broadband

Tremor, Long Period, and Explosion classes.

but acknowledge that this threshold will depend on the appli-
cation and user preference. This process is then repeated for
each of the subsequent overlapping time windows. The model
can be applied to real data relatively quickly. For example, 4
hours of data from 5 stations split into 2-minute windows with
50% overlap can be classified in approximately 15 s using a
standard laptop computer. Reading in the seismic data from
an FDSN server is included in that time estimate, and often
takes longer than ML processing.
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Similar to T24, we compute reduced displacement, or Dg
[Aki and Koganagi 1981], for each time period analyzed by
v01SS-Net. Like RSAM [Endo and Murray 1991], Dg provides
a sense of seismic amplitude over time, but is by definition
comparable from one volcano to another regardless of source-
station distance. Reduced displacement is computed using a
single reference station at each volcano and in 2-minute win-
dows with 50% overlap to match the VOISS-Net classifica-
tions. We assume that the signal is primarily composed of
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Figure 6: Generalized voISS-Net model applied to Semisopochnoi volcano seismic data between July 27, 2021 07:30-10:30. [A]
Single-station and network classifications colored by seismicity class. [B] Network vote probability (P,,,,), with our threshold
of 0.4 indicated by the red line. [C] Reduced displacement for the reference station CERB. D-H) Spectrograms for the five selected
stations, with their distance to the vent listed under the station name on the right. This diverse sequence features multiple types
of tremor and transient events. VOISS-Net classifications generally agree with our interpretations.

surface waves at a dominant frequency of 2 Hz and that the
source is at the eruptive vent indicated by the red triangle in
Figure 1.

We typically show hours to days-long VOISS-Net classifica-
tions in a “timeline” fashion, such as the 3-hour-long example
from Semisopochnoi in Figure 6. The top panel shows the
VOISS-Net prediction as a function of time for each station,
with the seismicity class indicated by a specific color. Be-
low this is the network vote panel, followed by Pjorm and
Dpg. Network votes with a P,orm < 0.4 are discarded. The
spectrograms for the selected stations are shown in the lower
panels.

3 RESuLTS

We apply the generalized VOISS-Net model to six different
volcanoes to analyze its effectiveness and limitations on a va-
riety of different types of seismicity. The six volcanoes and
associated time periods we choose are: Semisopochnoi vol-
cano, Alaska, in July 2021; Trident Volcano, Alaska, in De-
cember 2023; Kilauea Volcano, Hawai'i, in June 2023; Great
Sitkin Volcano, Alaska, in May 2021; Mt. Etna Volcano, Italy,
in December 2018; and Pavlof Volcano, Alaska, in 2021-22
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(Figure 1). These volcanoes and time periods provide a mix of
eruptive and non-eruptive seismicity with different styles and
durations of unrest and seismicity. We acknowledge most of
these volcanoes are in Alaska, but choose them since this is
where we have the most experience applying VOISS-Net and
also because of the varied, extensive volcano seismicity in the
region. Additionally, the data we choose are open source and
accessible. Further details on the volcanoes and associated
seismicity are given below. Note we only provide brief details
of the associated volcanic activity for each of the periods as
our focus here is on the VOISS-Net classifications and not on
the volcano itself. All times listed are in UTC.

3.1 Semisopochnoi, Alaska, July 2021

First, we apply VOISS-Net to seismic data from
Semisopochnoi volcano, Alaska. Semisopochnoi is a re-
mote volcano in the western Aleutian Islands (Figure 1A). It
most recently erupted between 2018-2023 and the activity
consisted of intermittent phreatomagmatic eruptions from
the north cone of Mt. Young (red triangle in Figure 1A)
that produced mostly low-level ash and gas plumes. The
seismicity from this eruption typically consisted of various
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types of tremor, LP events, and explosions. Semisopochnoi
had few VT earthquakes during this eruption period [Lyons
et al. 2025].

Figure 6 shows the VOISS-Net classifications and spec-
trograms between July 27, 2021 07:30-10:30 for five
Semisopochnoi stations (CERB, CESW, CEPE, CETU, CEAP)
(Figure 1A). The spectrograms during this period show a wide
range of spectral signatures that are generally consistent with
the VOISS-Net classifications. VOISS-Net detects LP signals
from 7:30-7:35, which are apparent as multiple transient low-
frequency pulses in the spectrograms. The next ~45 min-
utes have a period of low Py, classifications of Broadband
Tremor, Explosions, and an LP, consistent with the spectro-
grams that have energy concentrated below 5 Hz and oc-
casional weak broadband transients. An energetic transient
around 08:16 is classified as an Explosion. This low-amplitude
event was only weakly recorded on the local infrasound net-
work and not in the explosion catalog of Lyons et al. [2025].
A few minutes later an approximately 12 minutes long, ener-
getic sequence of Harmonic Tremor is detected well across
all stations and shows up clearly as multiple spectral lines in
the spectrograms. This period also has the highest amplitudes
with Dg up to 7 cm?. Intermittent Noise, LPs, and weak ex-
plosive events are then detected with low Py, until ~09:20
when a more energetic Broadband Tremor pulse is detected
until 09:43. An impulsive, broadband signal at 09:48 is clas-
sified as an earthquake. Another tremor pulse starts at 09:50
and is classified as a mix of Broadband and Harmonic tremor.
Weak LPs, Explosions, and a few periods of Noise are then
detected.

The five stations selected for this example all show gener-
ally similar spectral characteristics, which is consistent with
their individual VOISS-Net station classifications generally be-
ing in agreement (Figure 6A). We suggest this is likely related
to the overall high SNR. The different station distances to the
active vent (2.6-8.4 km) and associated path and site effects
likely account for spectral differences.

3.2 Trident Volcano, Alaska, December 2023

We apply VOISS-Net to a sequence of non-eruptive, but
somewhat difficult-to-classify seismicity near Trident Vol-
cano, Alaska. Trident Volcano is a stratovolcano in the Rat-
mai volcanic cluster, (Figure 1B). Its most recent eruption was
a long-lasting, intermittent eruption between 1953—1974 that
consisted of lava effusion and sporadic explosive activity [Hil-
dreth et al. 2001]. Elevated seismic unrest began at Trident
Volcano in August 2022 and lasted for ~1.5 years. The seis-
micity during this period consisted of VT earthquakes, mostly
at shallow depths, along with periods of deep event sequences
with mixed frequency content and durations of tens of seconds
to minutes [Orr et al. 2025]. Occasional “tornillos™, or discrete
events with monochromatic frequency content and a decay-
ing coda, are known to occur near Trident Volcano as well
[De Angelis 2006].

Here we apply VOISS-Net to four stations near Trident Vol-
cano (KAKN, KBM, KABU, KVT) (Figure 1B) from December
4, 2023 04:45-07:15 (Figure 7). The stations are relatively
far from Trident Volcano at 7.3-19.9 km distance. During
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this period there are multiple types of local and teleseismic
seismicity, some of which are difficult to quantify. The ma-
jority of the time period is classified as Noise across all sta-
tions, which is consistent with the general level of seismicity
(Dr < 0.2 cm?) and the fact that this volcano is not erupt-
ing or in a state of heightened unrest. Two sets of broad-
band/mixed frequency events are apparent from ~05:05-05:12
and 05:48-05:55. VOISS-Net classifies the first sequence as a
mix of an LPs, an Explosion, and Broadband Tremor, and
the second as a series of LPs and an Earthquake. No Explo-
sions or subaerial activity occurred at this time, but otherwise
these classifications are consistent with our interpretations of
the spectrograms. AVO seismic analysts were able to locate
a couple events within these sequences and they had deep
hypocenters between 30-35 km depth and weak S waves.
A low-amplitude tornillo occurs at 06:26 and is classified as
Monochromatic Tremor. These events are typically difficult
to automatically detect. VOISS-Net also detects multiple other
Earthquakes and LP signals between 06:55—07:15. These also
generally agree with our interpretation and are consistent with
AVO seismic analyst picks. Note multiple low frequency tele-
seismic events are incorrectly classified as LPs and Explosions,
such as the ones around 05:20 and 06:22. Teleseismic events
are not included in our training dataset, which is focused on
volcanic seismicity.

3.3 Kilauea Volcano, Hawai'i, June 2023

We apply VOISS-Net to the build-up and subsequent erup-
tion of Kilauea, Hawai'i, on June 7, 2023. Kilauea is a well-
monitored, frequently active shield volcano (Figure 1C). In re-
cent years it has had eruptions from both the summit region
and East Rift Zone. The June 2023 sequence consisted of ele-
vated VT seismicity and ground deformation near the summit,
and eventual eruption of lava from multiple fountains within
the Halema'uma'u crater in Kilauea’s summit caldera that com-
menced at 14:44. The seismicity from recent Kilauea summit
eruptions typically consists of pre-eruptive VT swarms fol-
lowed by sustained tremor.

Figure 8 shows the VOISS-Net classifications and spec-
trograms between June 7, 2023 14:00-17:00 for five broad-
band seismic stations around Kilauea’s summit caldera (RIMD,
WRM, UWE, HAT, PUHI) (Figure 1C). The stations are be-
tween 1.6—4.1 km from Halemauma'u crater. The seismic-
ity between 14:00 to around 14:52 is classified as earthquakes
with high P,,rm and Dg, which is generally consistent with
the spectrograms and HVO earthquake catalog. Clear broad-
band transient signals are apparent in the spectrograms during
this period, with some of the events having longer duration
codas. VOISS-Net classifications change to a mix of Broad-
band Tremor and Earthquakes from 14:52—15:15. Notably,
the eruption onset at 14:44 (red arrow in Figure 8A) is not
clearly detected by a change in VOISS-Net classifications de-
spite broadband, sustained energy being visible in the spectro-
grams below ~4 Hz. This is likely related to earthquakes and
tremor occurring concurrently during this period and overlap-
ping in the spectrograms, with VOISS-Net selecting the Earth-
quake class or returning a low P4, due to mixed classifica-
tions. The first network-wide Broadband Tremor classifica-
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Figure 7: Generalized vo1SS-Net model applied to Trident Volcano seismic data between December 4, 2023 04:45-07:15. Figure
layout is the same as Figure 6. Spectrograms for four stations are shown for this period with a mix of VTs, regional earthquakes,

a tornillo, and two episodes of mixed frequency events.

tion is at 14:54, and this is where tremor begins to dominate in
the spectrograms. From 15:15-17:00 the seismicity is primar-
ily classified as Broadband Tremor with a couple Earthquakes
and LPs. Py, is relatively low during this period due to
some mixed classifications between stations. There is some
weak harmonic structure in some of the stations, particularly
WRM and UWE from ~15:45-16:30. Overall the transition
from VT earthquakes to broadband tremor is captured fairly
well by VOISS-Net, although the tremor onset is masked by
some coincident earthquakes. We performed a similar anal-
ysis with some other HKilauea stations and found no major
changes in results. VOISS-Net also preformed well for other
recent Kilauea summit eruptions with similar characteristics.

3.4 Great Sitkin Volcano, Alaska, May 2021

Here we apply VOISS-Net to the build-up and subsequent
eruption of Great Sitkin Volcano, Alaska, on May 26, 2021.
Great Sitkin is an andesitic composite stratovolcano in the
Aleutian Islands that has erupted eight times since 1792 (Fig-
ure 1D). It is monitored by AVO with a five station local seis-
mic network and one infrasound station. Earthquakes rates
began to increase above background at Great Sitkin in early
May 2021. Elevated SO, and summit temperatures were also
observed during this time [Orr et al. 2024]. In the 24 hours
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leading up to the eruption, Power and Roman [2024] note
that the earthquake frequency content is relatively low and
the events have poorly developed S-waves, and they classify
the events as LPs. We note that the spectral content of most
of these events more closely resembles our earthquake than
LP class, as they have relatively impulsive, broadband onsets
(Figure 9). The earthquake rate increased until 05:03, when a
single vulcanian explosion occurred at the summit that pro-
duced notable infrasound, ballistics, and an ash plume to 4.5
km above sea level [Orr et al. 2024].

VOISS-Net generally detects and classifies the precursory
seismicity, explosion, and return to background of the May
26, 2021 Great Sitkin eruption. Figure 9 shows the VOISS-Net
classifications and spectrograms between May 26, 2021 04:00—
07:00 for five stations around Great Sitkin (GSTD, GSTR,
GSSP, GSMY, GSCK) (Figure 1D). The stations range from
3.3-7.8 km from the eruptive vent. The time period from
04:00-05:00 is classified primarily as Earthquakes across all
stations, with Dgr being relatively low. We note that these
Earthquake classifications from VOISS-Net are in contrast to
the LP classifications of Power and Roman [2024], and we dis-
cuss this disagreement in Section 4.1. A few LP and 4 Explo-
sion classifications are also returned. These Explosions are
erroneous classifications and all have low P, of <0.5, and

Page 314



VOLCANICA 8(1): 305-323. https://doi.org/10.30909/vol/rjss1878
A) IMD A
] | Broadband
HI I Tremor
VOTE + | =
B) 1.0 ~—
N
E 0.5 —{ Harmonic
c) (?Q'O 028 T T T T T Tremor
IS
SE10
x o
D) Q 18 Monochromatic
g 8 Tremor
g o
=0
. 4
E) 15 Earthquake
8
22 s
|
g.—c 2 Long
F) 10 Period
8
wE
- 2 Explosion
G) 10
8
52
9 4 Noise
™ 2
H) 10
-E 8
Sa 3 N/A
n.:! 4
2
QO Q Q \\] \M Q Q
NO AN Ao R3S 460 N3 N

UTC Time on Jun 07, 2023

Figure 8: Generalized vo1Ss-Net model applied to Kilauea seismic data between June 7, 2023 14:00-17:00. Figure layout is
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may be related to earthquakes with particularly sharp onsets.
A high P;,m Explosion classification is returned from 05:03-
05:05, consistent with visual and infrasound observations of
an explosive event [Orr et al. 2024] (red arrow in Figure 9A).
This event has the highest Dg as well at over 30 cm?. After
the Explosion, a couple LP classifications are returned, but the
majority of the seismic data are classified as Noise, which is
also consistent with reported activity.

3.5 Mt. Etna Volcano, Italy, December 2018

We next examine how VOISS-Net characterizes an energetic
fissure eruption at Mt. Etna Volcano, Italy, that began on De-
cember 24, 2018. Mt. Etna is a well-studied, large, frequently
active basaltic volcano that produced a range of eruption styles
and seismicity [Patane et al. 2013; Andronico et al. 2021] (Fig-
ure 1E). Eruptions occur within both a central crater region
and also frequently as flank eruptions. The volcano is well-
monitored by the National Institute of Geophysics and Vol-
canology (INGV) with 16 seismometers, in addition to a num-
ber of other multi-parameter sensors. On December 24, 2018,
VT earthquake activity at Mt. Etna increased around 08:30,
the result of dike intrusion [Cannavo’ et al. 2019]. A fissure
eruption began at 11:11 and eruptive vents propagated SSE
over the following ~25 minutes. The eruption produced in-
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tense tremor and multiple large (M; 4+) earthquakes. Eruptive
activity consisted of lava fountaining, an ash-rich plume, and
lava flows [Cannavo’ et al. 2019].

Applying VOISS-Net to 36 hours of data around the Mt.
Etna fissure eruption shows the model performs well at clas-
sifying pre- and syn-eruptive seismicity. Figure 10 displays
VOISS-Net classifications and spectrograms between Decem-
ber 24, 2018 00:00—December 25, 12:00 for three stations on
Mt. Etna (EMCN, ESLN, EMSG) (Figure 1E). These stations
are at distances of 5.3-8.5 km from the summit. Note many
more seismometers are deploged on Mt. Etna but these three
stations are broadband and publicly available. VOISS-Net pre-
dicts a mix of LPs and Broadband Tremor between 00:00—
08:30 on December 24. Dy values are low during this period.
At ~08:30 the Earthquake class is classified near-continuously
until ~11:11 when a mix of classes are predicted between
the stations, resulting in generally low P values until
~15:00. D increases to high levels during this period with a
mix of transient and sustained increases. From December 24
~15:00-December 25 ~03:00 VOISS-Net predominantly pre-
dicts Earthquakes, as these are dominant on stations ESLN
and EMCN. Occasional Broadband Tremor classifications are
made on EMSG where it appears strongest, likely related to its
greater distance from the earthquake hypocenters. Network-

Page 315


https://doi.org/10.30909/vol/rjss1878

Generalized seismic classification

Fee etal. 2025

Broadband
Tremor

Harmonic

Tremor

m
~
-

F)

(2
”

=
'
= =
NPODOON AN ON LA DOON SO OON BOWOO O NO

o® 3

Monochromatic
Tremor

Earthquake

Long
Period

Explosion

Noise

N/A

UTC Time on May 26, 2021

Figure 9: Generalized vo1SS-Net model applied to Great Sitkin volcano seismic data between May 26, 2021 04:00-05:30. Figure
layout is the same as Figure 6. The red arrow at the top indicates the eruption at 05:03.

wide Broadband Tremor classifications become more com-
mon from December 25 03:00-12:00, with tremor strongest
again on EMSG.

The VOISS-Net classifications up until ~11:11 agree well
with our visual spectrogram interpretation and that reported
in Cannavo’ et al. [2019]. However, the onset of energetic
tremor around 11:11 does not coincide with a clear tremor
prediction by VOISS-Net. Similar to the Rilauea case study,
this is due to the multiple types of seismic signals (e.g. tremor,
VTs, etc.) occurring near-simultaneously. The complex mix
of tremor and VT earthquakes over the next ~24 hours re-
sults in disagreement in individual station classification, but is
overall consistent with the spectrogram characteristics.

3.6 Pavlof Volcano, Alaska, 2021-2022

Here we analyze how the generalized VOISS-Net model per-
forms over an ~2 year period at Pavlof Volcano, and compare
our results with that from T24. Pavlof Volcano is a frequently
active volcano that has a range of eruption styles, including
low-level explosions, lava fountains and occasional lava flows,
as well as energetic subplinian eruptions [Waythomas et al.
2014; Fee et al. 2017; Waythomas et al. 2017]. Our analysis
period encompasses an ~1.5 gear low-level eruption at Pavlof
Volcano. The eruptive activity during this period consisted
primarily of weak explosions producing small ash plumes and
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fountain-fed lava flows from a vent on the upper southeast
flank of the volcano [Tan et al. 2024]. Extensive, variable seis-
mic signals were recorded and detailed in T24.

The generalized VOISS-Net model provides an improved
seismic catalog for the 2021-22 Pavlof Volcano eruption. Fig-
ure 11 shows the AVO Aviation Color Code, spectrogram for
station PS1A, and binned VOISS-Net classifications for the
generalized and T24 models between January 1, 2021-March
1, 2023. Five stations (PVV, PN7A, PS4A, PV6A, PS1A) at dis-
tances of 6.8—11.1 km are used (Figure 1E). The GREEN AVO
color code corresponds to background activity, YELLOW to
elevated unrest, and ORANGE corresponds to eruption. The
spectrogram is computed with a 500 s window length to cap-
ture broad spectral features over this long time period. The
VOISS-Net 2 minute classifications are binned into 1 hour in-
tervals and separated into class-specific rows in Figure 11C
and 11D. The plotted bin opacity is defined by the ratio of the
class occurrence relative to the total number of time steps per
hour. The most striking difference between the performance
of the two models is the relative lack of earthquakes detected
in the generalized model. This is consistent with the lack of
VT seismicity at Pavlof Volcano for this eruption, and is likely
due to the different Earthquake class labels between the gen-
eralized and T?24 models. Many more events are classified as
LPs in the generalized model, which is broadly consistent with
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Figure 10: Generalized vO1SS-Net model applied to Mt. Etna Volcano seismic data between December 24,2018 00:00-December
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Pavlof Volcano seismicity. LP swarms, such as in March 2021
and January 2023 are mostly classified as LPs by the general-
ized model, while the T24 model typically classified these as
Explosions. Note that some of the elevated regional seismic-
ity, particularly related to the M8.2 Chignik earthquake in late
July 2021, is likely being misclassified as LPs and Explosions
in the generalized model. The generalized model also seems to
detect more episodes of Monochromatic Tremor in late 2021,
whereas some of those periods are classified as Broadband
Tremor by T24. Classifications during the main portion of
the eruption generally agree between the two models. Noise
also dominates in both models before and after the eruption,
which is also consistent with our interpretation, and the gener-
alized model appears to have fewer misclassifications outside
the eruption period. Lastly, our P, thresholding appears
to reduce misclassifications particularly before and after the
eruption begins (i.e. less unexpected Broadband Tremor de-
tections during background activity).

4 DISCUSSION
4.1 VO0ISS-Net classifications

Opverall, our generalized VOISS-Net model does well at classi-
fying seismic spectrograms both in our test set (87 % accuracy)
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and for the six volcano case studies we present here. It also
performs well in the individual volcano studies of T24 and
Lyons et al. [2025]. In addition to the high classification ac-
curacy for most classes in the test set (Figure 5C), we find
the model classifies the main types of volcano seismicity in a
spectrogram similar to how we interpret them, with the added
benefits that it is automated and repeatable. We find the main
limitations of the model to be 1) classifying signals that over-
lap within a 2-minute spectrogram, 2) differentiating between
transients that contain similar spectral characteristics, and 3)
classifying signals that lie outside the training dataset or the
seven predefined classes. These challenges also exist for hu-
man analysts classifying seismicity in spectrograms.

Overlapping seismic signals often occur during periods of
heightened volcanic activity (e.g. Figure 8, 10). VOISS-Net
is constructed to return one classification per time step, and
in cases where different classes occur in that time step, we
prioritize the transient class (Earthquake, LP, Explosion). This
choice was made as prioritizing long-duration sources such as
tremor and noise would often not permit coincident transients
to be detected. Adjusting the overlap between consecutive
windows or reducing the duration of the spectrogram may
alleviate some issues with concurrent signals, but could also
lead to additional misclassifications. We have found that a
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Figure 11: Comparison of the generalized voISS-Net model with that of T24 for the 2021-2022 eruption of Pavlof Volcano. [A]
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tions using the [C] Generalized and [D] T24 models binned into 1 hr intervals for comparison over this long time period. Overall
the generalized model seems to characterize the volcanic seismicity more accurately, including the relative lack of earthquakes
detected in the generalized model, which is consistent with Pavlof Volcano's seismicity. The generalized model also detect more
LPs prior to the eruption and appears to have less false positive classification prior to the eruption.

2-minute spectrogram is a good trade-off to capture transient
events of a few to tens of seconds and longer duration signals.
We envision that “image segmentation” [Minaee et al. 2021}, a
popular method in ML image classification for the detection
of different classes within a single image, could be utilized to
alleviate this issue. However, this would require very careful
manual labeling of thousands of spectrograms, a very time-
consuming process and potentially prone to mislabeling.

Transient signals, such as LPs and explosions, may also
have similar spectral content to each other. Unlike the other
classes, our Explosion class and labels are not defined by
their time-frequency spectral characteristics but actually by
its source process and often by its acoustic wave. We find
that there is quite a bit of variability in explosion signal spec-
trograms (e.g. Figure 2) and lower classification accuracies
than the other classes (Figure 5C). The Explosion class also
has a low recall of 0.75 (Supplementary Material 1 Table S1),
suggesting it has a relatively high false negative rate. Occa-
sionally, a high-frequency air-ground coupled acoustic wave
will be present after the explosion seismic signal [e.g. Fee et
al. 2016], but this is not always apparent. Acoustic-seismic
coupling is complex and can depend on many factors [e.g.
Madshus et al. 2005; Wills et al. 2022], thus the associated air-
ground coupled wave should not be the characteristic feature
of explosion seismic signals. We have found that colocated in-
frasound sensors or a nearby sensor network are often critical
for determining explosions. Future work could explore fur-
ther the spectral properties of explosions in seismic data and

S

Presses universitaires de Strasbourg

improve this class, and leverage colocated infrasound sensors
when available.

As expected for supervised learning, our model also strug-
gles to classify signals that are not present in the training data
or that do not fall into one of the predefined classes. The Tri-
dent Volcano case study illustrates this well (Figure 7). The
mixed-frequency events are classified into multiple classes as
a function of time rather than a single, consistent class. Al-
though this may seem incorrect, it is consistent with the evolv-
ing/mixed spectral content of the spectrograms. The regional
and teleseismic earthquakes in this example are also misclas-
sified as LP events. Regional and telesesimic earthquakes are
relatively easily detected with other methods, and it would
be straightforward to integrate existing earthquake catalogs
alongside VOISS-Net to remove these misclassifications. Im-
portantly, we also note that our training dataset consists of
spectrograms from stations deployed approximately 2—15 km
from the volcanic vent. Stations closer and further than this
distance will likely show different spectra, as path effects are
known to be significant for LP and other volcano seismic
events [e.g. Bean et al. 2008; Titos et al. 2018]. We in fact
observe variable spectra as a function of distance in multiple
examples (e.g. Figure 6, 8, 10). Future work could take path
effects into account for classification, perhaps giving stations
more weight near the source than those further away [Titos et
al. 2023]. Our current implementation was trained on stations
at different distances and volcanoes to decrease the reliance
on path effects and focus just on the spectrogram itself. In-
tegrating all three components of the seismometer could also
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help with event type characterization, although this assumes
three components will always be present in the data.

The Great Sitkin earthquake classifications in Figure 9 are
in disagreement with the LP classifications of Power and Ro-
man [2024]. They used Frequency Index (FI) [Buurman and
West 2006] and Average Peak Frequency (APF) [Ketner and
Power 2013] to differentiate between earthquakes and LPs in
the AVO catalog. The events leading up to the May 26 ex-
plosion had relatively low FI and APF, along with poorly de-
veloped S-waves. In Supplementary Material 1 Figure S2 we
compute and plot FI for the same data and time period as
Figure 9. Similar to Power and Roman [2024] we find these
events to have FI between approximately —0.5 and —2 using
lower and upper frequency bands of 1-5 and 5-10 Hz, re-
spectively, albeit with a much longer evaluation window of
120 s. However, the overall event spectral content (onset and
coda) is more similar to our VT labels than the LP labels (Fig-
ure 2), which is why our model classifies them as VTs. Our
LP labels are generally devoid of a clear transient onset like
those in Figure 9. The Great Sitkin events may fit the “hy-
brid” class introduced by Lahr et al. [1994]. FI, APF, and other
metrics could be a useful tool to aid VOISS-Net in transient
event classification, and we integrate FI computations in our
code for comparison. However, here we choose not to in-
tegrate it directly into the classification scheme as they are
useful but imperfect event classification metrics. First, FI has
a magnitude bias. Large events will naturally have a lower
frequency content. Second, FI is generally computed on 5-7 s
of data around the P-wave, while VOISS-Net computes a clas-
sification over a 2-minute-long window. The long duration,
low frequency content of LP events is missed in traditional FI
computation but key for VOISS-Net classification. Lastly, FI is
only applicable for VTs and LPs, and its utility for tremor and
the Explosion classes is unclear. Users are encouraged to im-
plement more sophisticated transient classification measures
as they deem appropriate.

We also note that VOISS-Net does not provide an exact
event onset, but rather just the time of the detection window.
In our examples with 50 % window overlap, the time window
resolution is 1 minute. Other techniques would likely need
to supplement the VOISS-Net classifications if precise event
onsets are desired.

Lastly, we point out that our model does not classify the
volcano seismic source process, but rather the properties of
the spectrogram. VOISS-Net first classifies the station spec-
trograms and then determines a most likely network-wide
class, along with a normalized probability. Source features
can then be determined via modeling and other signal anal-
ysis after the classification. Future work could also integrate
other spectrogram-like quantities, such as time-frequency po-
larization analysis of three-component seismic data [Haney et
al. 2020] or network covariance [Soubestre et al. 2018] to help
elucidate source processes.

4.2 Class and label selection

Not all volcano seismicity will fit into our seven predefined
classes. Of note is the fact that we only consider signals be-
tween 0.5-10 Hz, thus Very Long Period (VLP) [Matoza and
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Roman 2022] events are out of band and will not be classi-
fied. Some events, such as VTs and explosions, often have
considerable energy above 10 Hz. We considered incorporat-
ing other seismic classes (e.g. hybrid events, tornillos, regional
earthquakes), but that would require additional, vetted labeled
data. More classes would also increase the chance for mis-
classifications by providing other class options that may not
be significantly different. Additional classes would also add
further challenges to balancing the test and validation sets
(Section 2.2.1). One way to mitigate the occasionally poor
transient classification performance would be to merge the
Explosions, Earthquake, and LP classes into a single “Tran-
sient” class. The transient classifications could then be passed
to different models or methods for discrimination, such as P/S
ratio for earthquakes versus explosions [Wang et al. 2020] and
Frequency Index for earthquakes versus LPs [Buurman and
West 2006].

Adding in additional spectrogram labels from other vol-
canoes and time periods would likely further increase
VOISS-Net’s performance and generalization by providing a
greater diversity of signals for the model to learn. However,
as noted in this and previous work, hand-labeling spectro-
grams can be a time-consuming process and is subjective and
based on the analyst’s interpretation. Synthetic data could also
be used to expand the training dataset, with care needed to
ensure realistic signal and noise. Transfer Learning [Lapins
et al. 2021] may also be effective in applying VOISS-Net, but
we leave that for future testing and evaluation.

4.3 Comparing VOISS-Net models

We believe our generalized VOISS-Net seismic model is an
improvement upon previous models by T24 and Lyons et al.
[2025], and should be more effective at classifying signals from
volcanoes worldwide. The generalized model test set accu-
racy is 87% compared to 81% for both T24 and Lyons et
al. [2025]. Examination of the classifications in the individual
case studies in Figures 6—10 and the comparison with T24 in
Figure 11 shows that the generalized model typically agrees
with our interpretations of the spectrograms. We acknowl-
edge that validation of the classifications is challenging and
subjective based on the analyst’s and our interpretation. The
switch from 4 to 2 minutes also provides additional granularity
and more of a focus on transient events, while still capturing
some of the longer duration features of tremor. The addi-
tion of the LP class is important to capture this frequent event
type, although we find that it is occasionally misclassified as
regional and teleseismic earthquakes and adds additional chal-
lenges for classifying transients. The T24 model also appears
to be biased in classifying most impulsive signals as earth-
quakes. Our vastly larger training dataset adds diversity and
numbers that aids in generalization and reducing bias. Lastly,
we implement thresholding in our network-wide classifica-
tion using Pnorm- Pnorm Was introduced in T24 but only as
a visual metric for comparison. Here we use it to discard low
probability classifications and find it to be effective, similar to
Lyons et al. [2025)].
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5 CONCLUSIONS

We present an updated ML model to detect and classify the
main types of volcano seismicity. Our model is an attempt
to generalize the model of Tan et al. [2024], which focused
primarily on tremor. We utilize a broad, diverse training
dataset of over 270,000 spectrograms that are split into seven
seismicity classes: Broadband Tremor, Harmonic Tremor,
Monochromatic Tremor, Explosions, Earthquakes, LPs, and
Noise. We utilize the training data of Tan et al. [2024] and
Lyons et al. [2025] and supplement it with additional expert-
labeled data and catalog-derived earthquakes from multiple
other volcanoes. This diverse training dataset is then used
to train an image classification model that successfully clas-
sifies 87 % of the test set. The model can then be applied to
continuous seismic data for a variable number of stations at
any volcano. VOISS-Net returns both station-specific classi-
fications as well as a network-averaged majority vote. We
find the network vote and associated classification probability
threshold is an effective way to mitigate inconsistent classifi-
cations between stations.

We apply the generalized VOISS-Net model to six volcanic
unrest case studies from a diverse set of volcanoes and du-
rations. These case studies illustrate how VOISS-Net can ef-
fectively classify the spectral content of continuous seismic
data. It performs well for a diverse sequence of tremor, LPs,
and explosions at Semisopochnoi, Alaska, similar to the re-
sults of Lyons et al. [2025]. VOISS-Net classifies some unique,
mixed frequency and monochromatic events at Trident Vol-
cano, Alaska, which are traditionally difficult to detect and cat-
alog. We find that VOISS-Net successfully classifies the main
features of the run-up and eruption signals from recent erup-
tions at Kilauea (Hawai'i, USA), Great Sitkin (Alaska, USA),
and Mt. Etna (Italy). In these cases it is able to successfully
detect and classify precursory VT earthquakes, LP events,
and tremor. Our model occasionally struggles with periods
of simultaneous seismic events (i.e. earthquake and tremor
occur concurrently) and performs poorly on signals it is not
trained on (i.e. regional and teleseismic seismicity). The model
also occasionally has challenges differentiating transient event
types.

VOISS-Net provides a fast, interpretable means of charac-
terizing volcano seismicity based on its spectral characteristics.
It augments the role of a seismic analyst by providing seismic
summaries in the form of timelines. It can be used to construct
catalogs of volcano seismicity that are often difficult to catalog
and provides a systematic and reproducible means of identi-
fying volcano seismicity, ensuring consistency in long-term
seismic databases. Users can easily apply the open-source
model to data from an FDSN web service client. Alterna-
tively, they can build their own labeled dataset and craft their
own volcano-specific model. VOISS-Net is not intended to
supplant existing techniques to detect individual types of seis-
micity (i.e. earthquake detection and location), but rather can
be used in conjunction with traditional techniques to form
more complete seismic catalogs. We envision and encourage
future work that will examine the utility and limitations of
VOISS-Net, as well as additional improvements to the training
data and overall implementation. A similar framework could
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be used to create a generalized volcano infrasound model as
well.
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