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MinDet1: A deep learning-enabled approach for
plagioclase textural studies

Norbert Toth∗α and John Maclennanα
αUniversity of Cambridge, Cambridge, UK.

ABSTRACT
Quantitative textural attributes, such as crystal size distributions (CSDs) or crystal aspect ratios, provide important constraints on
the thermal history of rocks. They facilitate the investigation of crystal nucleation, growth, andmixing as well as the cooling rate.
However, they require large volumes of crystal segmentations and measurements often obtained with manual methods. Here,
a deep learning-based technique—instance segmentation—is proposed to automate the pixel-by-pixel detection of plagioclase
crystals in thin-section images. Using predictions from a re-trained model, the physical properties of the detected crystals (size
and aspect ratio) are rapidly generated to provide textural insights. These are validated against published results from manual
approaches to demonstrate the accuracy of the method. The power and efficiency of this approach is showcased by analysing
an entire sample suite, segmenting over 48,000 crystals in a matter of days. The approach is available as MinDet1 software
for users with moderate expertise in Python. Widespread use of MinDet may facilitate significant developments in igneous
petrography and related fields.

KEYWORDS: Deep Learning; Segmentation; Petrography; Timescales.

1 INTRODUCTION

The textures of igneous rocks provide direct observational
constraints on the physics of magmatic processes [Cashman
1990; Higgins 2010b; Askaripour et al. 2022]. Petrologists have
long made use of quantitative descriptions of rock texture such
as crystal size distributions (CSDs) [Cashman and Ferry 1988;
Marsh 1988; Mangan 1990; Marsh 1998; Higgins 2000; Armi-
enti 2008] and crystal shapes [Jerram 2003; Hersum andMarsh
2006; Holness 2014] as powerful methods for interrogating the
thermal history of rocks and the timescales of processes affect-
ing them. Due to the relative ease of direct observation, de-
tailed petrographic descriptions of igneous rocks, often made
using thin-sections, are among the first steps in most petrologi-
cal studies. In some cases the entire observational record from
a study is petrographic. The understanding gained from this
primary analysis enables petrologists to target the most use-
ful parts of the rock for further, often more resource-intensive,
analyses. Therefore, the development of rapid and accurate
textural tools may allow for further streamlining of future stud-
ies.
Plagioclase feldspar is the most abundant mineral in the
Earth’s crust [Smith and Brown 1988]. As a major primary
igneous phase over a wide compositional range, it has found
extensive use as a reliable tracer for determining igneous ther-
mal history [Cashman 1993; Higgins 1996; Neave et al. 2017;
Holness et al. 2020] with crystal shapes shown to vary with
crystallisation time [Lofgren 1974]. A simple parameterisation
of crystallisation time, 𝑡 and mean crystal aspect ratio, 𝐴, was
developed by Holness [2014] where log10 (𝑡), is linearly re-
lated to 𝐴. This calibration was based on observations from a
set of basaltic sills with varying thicknesses, quantifying prior
observations that apparently tabular feldspars record slower
cooling than crystals with higher aspect ratios. This relation-
∗Q nt398@cam.ac.uk

ship provides a direct method of determining the timescales of
cooling of plagioclase-bearing igneous rocks from simple two-
dimensional observations alone, albeit that this calibration is
restricted to sills and other magmatic environments with im-
pinging plagioclase networks. More recent work by Mangler
et al. [2022] took this idea further and looked at plagioclase mi-
crolites in intermediate melts to study how plagioclase crystals
change their crystal shape in three dimensions as a function
of size during crystallisation. As part of this work, Mangler
et al. [2022] built on and corrected previous methods used to
determine most likely 3D crystal morphology from 2D slice
observations [Morgan and Jerram 2006]. This method makes
use of forward models of ideal cuboidal crystal slicing.

All large-scale textural studies are faced with a common
problem: What is the best approach to generate statistically
acceptable quantities of data with the least observational effort
(e.g. time spent manually tracing digital photomicrographs).
So far almost all work has been based either on threshold-
ing RGB or grayscale values for images acquired using opti-
cal or electron microscopes, to provide approximate crystal
masks, or more often on manual crystal segmentation which
is a labour-intensive and time-consuming task. Electron mi-
croscopes are a rich source of semantically strong datasets
using EDS (energy-dispersive X-ray spectroscopy) or WDS
(wavelength-dispersive X-ray spectroscopy) detectors to cap-
ture X-rays that can be directly related to mineral chem-
istry. Image segmentation methods have long been success-
fully utilised for these datasets using a wide variety of tech-
niques [Ortolano et al. 2014; Lormand et al. 2018; Sheldrake
and Higgins 2021; Tung et al. 2023; Visalli et al. 2023]. How-
ever optical microscopy is significantly less expensive and less
labour-intensive in terms of sample preparation. It is there-
fore vital that similar methods are developed for optical image
segmentation as well.
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Superpixel segmentation methods for human-computer col-
laborative tasks are readily employed for optical image seg-
mentation [Yu et al. 2023], but they still require extensive
human effort for large-scale studies as they heavily rely on
stacked images with different light polarisation. To overcome
this significant effort, a number of approaches have been pro-
posed based on machine learning. One of the first examples
of such work using optical microscope images are a set of clas-
sification methods based on convolutional neural networks
(CNN) to predict the rock type shown in images [Alférez et
al. 2021; Patro et al. 2022]. Such a task is merely a demonstra-
tion of past capabilities, but it is not of obvious quantitative use
in petrological or petrographic analysis. One promising opti-
cal method was developed for sandstone grain segmentation
using the popular U-Net semantic segmentation model [Das et
al. 2022], but these models can only predict phase labels and
individual grains are not segmented. The most effective meth-
ods for phase segmentation in rock sections have been based
on electron microscopy rather than optical microscopy, where
EDS-derived compositional maps were used to classify pixels
as mineral phases either using machine learning classification
[Leichter et al. 2022] or through a database matching approach
[Neave et al. 2017; Bell et al. 2020; Schulz et al. 2020]. Even
this sort of scanning electron microscopy approach cannot au-
tomatically separate touching grains because phase classifica-
tion based on pixel chemistry can also only provide semantic
labels.
Here, we present a new automated method that capitalises
upon modern advances in Deep Learning (DL) computer vi-
sion technologies. Specifically, region-based instance segmen-
tation models [Hafiz and Bhat 2020] are employed as they are
able to generate both semantic (object class) and localisation
labels thereby not just segmenting plagioclase from everything
else, but also providing individual crystal segmentation. These
results may then be used for appropriate quantitative textural
analyses. Instance segmentation can therefore overcome the
limitations of semantic-only segmentation techniques and are
ripe for use in geological applications. We refer to the ap-
proach as MinDet and provide links to the software in the
Data Availability section. This first version of the software,
MinDet1, is exclusively developed for plagioclase detection.
The MinDet1 models presented here are trained on datasets
of manually segmented plagioclase crystals and the ability of
these trained models to rapidly generate accurate large-scale
data is demonstrated in the following sections. MinDet pro-
vides a ten-fold speedup in segmentation time using CPUs for
processing (as opposed to GPUs which would be even faster),
whilst maintaining comparable accuracy to manual segmenta-
tion methods. Rapid insights into the crystallisation timescales
of different plagioclase populations are for the first time possi-
ble. This is demonstrated using over 38,000 segmented crys-
tals from an entire sample suite of volcanic igneous rocks from
Iceland.

2 METHODS
2.1 Image acquisition

All images used for training and inference for the example
presented here were acquired using a ZEISS Axio Imager.A2

optical microscope. The images were acquired using both
linear polarising filters crossed at 90 degrees and circular po-
larisers to remove the crystal orientation dependence of bire-
fringence colour intensity [Higgins 2010a]. Each image was
acquired with identical light sources to eliminate any effects
on colour. Large thin-section scans were performed using the
panorama imaging mode where each tile was acquired us-
ing identical imaging conditions. Images were captured using
one of two different objective lenses as deemed suitable for
the crystal size within the sample; spatial resolution for these
images were either 1.38 or 2.76 µm/pixel. The proprietary
ZEISS file formats were exported as .jpg images with as lit-
tle loss of quality from compression as possible. These .jpg
files can be used directly by the deep learning models.

2.2 Instance segmentation models

Instance segmentation is a subset of image segmentation meth-
ods that aims to detect each instance of an object as well as
its boundaries within an image. Popular implementations in-
volve multi-stage deep convolutional neural network (CNN)
models trained on ground-truth labels. Convolutional neural
networks are ideally suited for image processing as they can
effectively combine both image channel (e.g. RGB) and spatial
information. Furthermore, deep neural networks, as opposed
to more conventional machine learning models, go a step fur-
ther with the ability to learn their own features through their
optimisation process [LeCun et al. 2015]. This diminishes the
need for precise feature engineering, where the user attempts
to create new features manually, as the model will automati-
cally learn the best set of features for the given task as long as
they are trained well. Therefore all images in the present work
are input to the model in RGB colour space as acquired directly
from the microscope camera with no other features identified
manually. Any other colour space can be reproduced by the
model’s feature extraction stage if it is deemed suitable during
model training. A key disadvantage of this approach is that
neural networks inherently produce black box models and it
is not possible to justify all of the model’s actions. Explain-
able AI is a major area of ongoing research within the deep
learning community.
A schematic view of the operation of such models for the
segmentation of plagioclase feldspar is shown in Figure 1. In-
put images are first processed by deep convolutional layers
to generate a stack of feature maps. These feature maps, as
explained above, are a result of complex mathematical func-
tions applied to all image channels with additional spatial in-
formation from the convolutional operation over a range of
lengthscales. In the models used in the present manuscript
this is done by pooling spatial information together from up
to 322 pixel2 area which allows the model to learn from more
regional contexts, but it often leads to loss of information at
the smallest lengthscales. The effect of this pooling operation
will be the subject of discussion in the performance evalua-
tion section. Based on these features, composed of RGB and
spatial information, the model proposes a large number of re-
gions of interest. The calculated regions are then evaluated
based on a trained scoring strategy for the given application,
and any region below a threshold score is discarded. For the
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Figure 1: Overview of the proposed region-based deep learning method for plagioclase feldspar detection. Deep learning models
necessarily transform the input into large stacks of feature maps that are used for further processing; next the model proposes
regions of interests that are evaluated on whether there are any plagioclase crystals present. Regions that survive the evaluation
process are taken individually and each crystal present is segmented out as binary phase masks which can be turned into
textural information such as crystal size (CSD) and aspect ratio (AR) distributions. Specific terms used to indicate the type of
segmentation results such as bounding box or mask is indicated as appropriate for clarity.

particular method described in this paper, regions with low
scores would be those not containing plagioclase. Surviving
regions of interest are passed to the segmenter network which
generates the final segmentation results. These results are also
scored from 0 to 1 to quantify the model’s confidence in the
resulting segmentation. From here on these will be referred to
as detection scores. There is a temptation to use these as prob-
ability values but this should be avoided because this model,
in contrast to Bayesian Neural Networks, is not conditioned
over a distribution of parameters. The score simply reflects
the confidence of the model in its results as a score between
0 and 1.

The two different segmentation results produced by in-
stance segmentation models are also highlighted in Figure 1—
bounding boxes and crystal masks. Bounding boxes show
the best-fit rectangular region for an instance of an object.
Bounding box approaches are used universally in object de-
tection tasks where exact pixel-by-pixel location and shape
of objects are not important, but their number and approxi-
mate location within an image is of interest. For the present
application, the image masks generated are more useful and
are identical in form to segmentation generated through most
manual methods. Masks show the segmented boundaries of

objects, thereby pointing to the exact pixel-by-pixel locations.
Crystal shapes and sizes may then be rapidly calculated using
well-established image processing techniques [Schneider et al.
2012].

There are a large number of different instance segmenta-
tion models and architectures developed and available for cus-
tom training. In the present work region-based multi-stage
segmentation models are considered only, more specifically
the three models trained are Mask R-CNN [He et al. 2017], HTC
[Chen et al. 2019a] and DetectoRS [Qiao et al. 2020]. These
were chosen as Mask R-CNN is one of the most popular and
well-tested models that performed exceptionally in all image
segmentation competitions even though it is a relatively sim-
ple model. HTC and DetectoRS are later modifications to Mask
R-CNN, hence they are expected to perform better. HTC specifi-
cally makes use of a significantly more complex segmentation
stage to improve on the final results. DetectoRS goes one step
further by also altering the model backbone—the stage that
generates the stack of feature maps. Their philosophy relies
on the idea that improved feature production should improve
the results of any subsequent stage of the model. Whilst the
modified models were shown to perform better on standard
datasets such as ImageNet [Deng et al. 2009] or COCO [Lin et
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al. 2014], it is not guaranteed they will outperform Mask R-CNN
on the rock samples used for training here.

2.3 Inference Software Implementation

We designed the bulk of the software written for this paper
to provide a user-friendly interface between the deep learn-
ing model and its geological application. The main aim is
to make the method accessible for researchers with mod-
erate Python experience as well as enabling its incorpora-
tion into pre-existing subroutines or methodologies. This ap-
proach will allow other researchers to custom-build on top
of the basic textural analysis performed in this paper. Pop-
ular and reliable Python tools for image processing from the
scikit-image [Van der Walt et al. 2014] library are heavily
used to analyse the results and build directly onto the inference
routines in the MMDetection application programming inter-
face. High-throughput use of the present method is enabled
by custom tiling and stitching routines of entire thin-section
scans as well as a custom post-detection processing algorithm
that was developed for more realistic detection results.
Panorama images of entire thin-sections imaged at close
to micrometer resolution have image sizes on the order of
20,000×20,000 pixels. Segmentation of these large images
with the deep learning models, known as inference, would
require exceedingly large amounts of memory, on the order
of 100 GB or more. Therefore, a custom tiling strategy is
employed during inference; a simple schematic is shown in
Figure 2A. Each panorama image is sliced into separate over-
lapping tiles according to the user’s preferred size, for example
1,000×1,000 pixels with 100 pixel overlap on each side. The
model performs inference on each tile image in series and the
results are stitched together resulting in the same panorama
image as before, but with each plagioclase crystal segmented.
We employ a very simple stitching strategy, with the core
aim being to avoid over-segmenting crystals that lie across
multiple tiles. Each tile is taken in turn to be stitched together
row-wise until we have a complete set of all rows stitched
together. Entire rows are then stitched together successively
to form the final image. During the stitching process itself we
simply take the overlapping regions and re-label the overlap-
ping crystal masks such that they are consistent across the tile
boundary. This eliminates any over-segmentation, which we
see as a more significant issue than under-segmentation.
Object detection pipelines make use of a standard algorithm
in their post-detection steps to remove overlapping segmenta-
tions. This step is often done with a method known as non-
maximum suppression (NMS) [Neubeck and Van Gool 2006];
an example is shown in Figure 2B. The standard NMS algo-
rithm looks at overlap of bounding boxes of detected objects
by means of calculating Intersection over Union (IoU) scores
and removes bounding boxes, except the one with the high-
est detection score, above a critical IoU threshold. It is by
nature an iterative process, with overlap between every de-
tection box necessarily calculated. A development of NMS
was proposed [Bodla et al. 2017] which does not remove ob-
jects straight away, but instead decays the detection scores as
a function of bounding box overlap. This approach is called
soft-NMS [Bodla et al. 2017]. It includes only a very subtle

change to standard NMS and was found to increase overall
segmentation performance for bounding box detection scores
significantly.

For crystal segmentation, however, the main interests lie in
the crystal masks predicted by the model and not the bound-
ing boxes. Therefore overlapping bounding boxes are not
necessarily undesirable in this case and instead one performs
NMS over instance mask IoU. This is equivalent to requiring
that two crystals cannot occupy the same pixel. The NMS
algorithm developed for the SOLOv2 model [Wang et al. 2020]
goes some way towards achieving this goal by considering
predicted masks only and decaying each mask’s scores as ac-
cording to their overlap with other masks. In the present
approach, instead of decaying detection scores the algorithm
computes mask overlap, as shown in Figure 2B, and any de-
tection with overlap above a critical threshold is suppressed
regardless of prior detection score. This method is a more re-
alistic approach as simple score decay can still give rise to sig-
nificant overlaps without mask suppression due to high detec-
tion scores. Any remaining overlap that falls under the thresh-
old for suppression is assigned to the mask with the highest
detection score as it shows a higher level of confidence by the
model.

Using a trained model, explained in the subsequent sec-
tions, and the software outlined above, an example segmen-
tation image is shown in Figure 3A with the crystals outlined
using the segmented crystal masks. Each crystal from the im-
age can be extracted using these crystal masks, as well as
for measuring sizes, shapes, and other properties, to allow for
inspection of the segmented crystals. This is shown for the
100 largest crystals from the segmented image lined up in de-
creasing size order with their long axes aligned vertically to
allow for further interrogation of them if necessary; each crys-
tal was scaled to fit into each grid. This provides a visual
example of model performance that is not necessarily appar-
ent from numerical metrics alone. Visually, the results show
good crystal localisation with limited errors. Furthermore, the
figure shows that such data-driven approach can go well be-
yond just providing crystal shape and size information due to
the wealth of other available data, such as the original image
itself. These images of individual crystals could potentially be
lines of future development, aided by the rapid segmentation
provided by the deep learning method, although these will not
be discussed in the present publication.

2.4 Evaluation Metric

As previously outlined, instance segmentation aims to solve
a complex set of tasks that involve object localisation, clas-
sification, and segmentation at the same time; a combination
of classical object detection and semantic segmentation. Ow-
ing to the complexity of the task at hand, the models and
their evaluation are necessary also complex. Classical metrics
used with machine learning models for classification tasks are
based on the number of true positives (TP), false positives (FP)
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Figure 2: Overview of the approach developed for detection on large area section scans and the post-processing step for re-
moving overlapping segmentations. [A] The input image is initially sliced into the desired tiles with overlaps between them; the
individual tiles are used for the detection to reduce the computational power required, which are stitched together to produce
the final segmented image. [B] Schematic overview of the NMS (Non-Maximum Suppression) approach used in the present work
compared to the standard version most often used for object detection. Intersection-over-union (IoU) scores are introduced as
the primary way to calculate overlaps in images. Standard NMS algorithm uses bounding boxes to check for object overlap and
suppresses highly overlapped segmentations according to that. In the present case, bounding boxes are not a suitable metric,
therefore mask-based NMS is employed where IoU of masks are calculated to support suppression of objects. Overlapping
segmentations are in general assigned to the object with the highest detection score; this are is removed from any other object.
The subscripts G, B and R refer to the green, blue and red colours of the areas shown.

and false negatives (FN) as shown:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1)

𝐹 =
2 × 𝑃 × 𝑅

𝑃 × 𝑅

where 𝑃 is precision, 𝑅 is recall and 𝐹 is the F1 score—a
combination of precision and recall into a single metric. Often
model performance is judged by F1 score alone as an easy to
use classification measure indicating the best trade off between
model precision and recall. The closer F1 score is to 1 the
better the performance is judged to be, with anything below
0.7 often cited as a bad performance.
For object detection tasks the gold standard evaluation met-
ric is the COCO mean average precision score (mAP) intro-
duced alongside the COCO object detection data set [Lin et al.

2014]. Although the naming is misleading, it is not an average
measure of precision alone but its a metric used to describe
the entire precision-recall curve as a single value between 0
and 1: the closer it is to 1, the better the model performance.
Furthermore, complications arise when one starts to consider
what should count as TP in instance segmentation, such as
how much overlap between predicted and real object is re-
quired. This can be measured by IoU of either bounding
boxes or segmentation masks with ground-truth labels. For
COCO this is dealt with by calculating precision-recall curves
at IoU threshold scores ranging from 0.5 to 0.95 and averaging
them to calculate the AP score. When instances of multiple
classes are present and segmented, the AP scores of each class
are averaged to get the final mAP score; in the present case
only a single class is dealt with so AP andmAP scores are iden-
tical. Specifically for instance segmentation, mAP scores can
be calculated for both bounding box and mask segmentation
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A B

Figure 3: Example segmentation on a test image of touching ophitic plagioclase crystals. [A] Segmented image showing the
segmented crystal masks, and [B] The 100 largest crystals lined up in descending order for further inspection. All crystals were
scaled to fit into each grid position and do not show true relative sizes.

performance in the identical way to evaluate the two different
aspects of object segmentation. A mAP score of 1 shows per-
fect object localisation with perfect precision and recall, but
further quantitative interpretation of the mAP metric is not as
straightforward as for the aforementioned classical machine
learning metrics. This is largely down to the large number
of parameters that need to be averaged over and hence; they
have largely been used as relative performance measures only.
A schematic example of calculating mAP score is shown in
Figure 4 for use with segmentation masks for a single class
of objects. The table in Figure 4B shows the seven predicted
masks ranked in order of decreasing model confidence—or
prediction score—alongside their respective IoU value with
ground-truth labels. Precision and recall values are calculated
sequentially in order of decreasing prediction score for given
IoU thresholds, taking all preceding detection masks into ac-
count at all times. Masks with IoU greater than the threshold
are deemed “true positive” and all others “false positive”. Re-
call is defined as the proportion of all positive segmentations
ranked above the given prediction score and precision as the
proportion of all segmentations above that rank that are true
positives [Everingham et al. 2009]. These are plotted to form
the precision-recall curves in Figure 4C; the numbers denote
the precision and recall values at a given rank. AP values for a
given IoU threshold are calculated by averaging over all preci-
sion and recall values; it’s a measure of area under the curve.
When the IoU threshold is set very low, such as 0.05, the
model shows excellent performance as almost all detections
are classified “true positive”, i.e. AP = 1. As the IoU threshold
is decreased, the AP value also decreases as low IoU masks

are now classified as false positives, leading to lower preci-
sion at high recall values. The calculated AP values form the
AP-IoU curve shown in Figure 4D. COCO mAP is determined
by averaging over AP scores above IoU threshold of 0.5. This
method necessarily misses out the left-hand side of the curve
where segmentation is made easy by low thresholds. There-
fore COCO mAP highly rewards models that are very precise
at object localisation and is therefore a powerful metric.
Finally, we would like to stress that as important as quan-
tified metrics are, such metrics may not provide the clarity of
model performance as actual visualisation of results, such as
Figure 3.

2.5 Training

The term training is used to define the optimisation proce-
dure of models in machine learning. The training of neu-
ral networks is primarily done using iterative methods called
Stochastic Gradient Descent (SGD) and backpropagation on
a defined objective function, termed loss function, to find
the best fit parameters for a given task. In the case of in-
stance segmentation a multi-task loss function is defined as
𝐿 = 𝐿cls + 𝐿box + 𝐿mask to direct model performance for each
task of classification (𝐿cls), bounding box detection (𝐿box), and
mask segmentation (𝐿mask). Note in the present case that be-
cause there is only one class segmented, plagioclase, 𝐿cls is not
an important term. To configure the SGD process one must
choose a configuration of the learning mechanism external to
the machine learning models, universally referred to as hy-
perparameters. The most important of them is the learning
rate which defines the effective step size during the parameter
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Figure 4: Schematic object detection example using segmentation masks to localise objects and calculate AP scores based
on IoU threshold. [A] Schematic scene with objects (black bold outlines) and detections (white dotted outlines); [B] table of
detections ordered according to detection score with IoU calculated between detected and “real” masks. [C] Precision-recall
curves for selected IoU thresholds showing the plotted points for each mask; [D] Interpolated AP-IoU threshold curve with mAP
score calculated as shown. Note how the AP score decreases significantly as the IoU threshold is made tougher.

update step of SGD. Larger learning rates tend to converge to
minima in fewer steps, but if too large then SGD can over-
shoot the minimum or lead to divergent behaviour and fail to
converge; if learning rates are to small, SGD will take signifi-
cantly longer to converge. Therefore it is vital to find the best
values for learning rate during training by setting up identical
training runs and varying the learning rate or some other hy-
perparameter to find the best performing model and training
regime configuration.
The training dataset was compiled from over 20 igneous
rock thin-sections of basaltic compositions of varying textures
from porphyritic volcanic rocks to gabbros with varying min-
eral assemblages and plagioclase abundance; see examples in
Figure 5A. Some tolerance was given to varying acquisition
parameters to ensure no crystals were over-saturated in any
section. Plagioclase crystals were segmented individually by
tracing the edges of crystals using the open-source Python
software Labelme [Wada 2016]. The final set of training im-
ages consisted of over 8000 segmented crystals. The result-
ing annotations, stored in separate JSON files for each image,
were converted to the popular COCO [Lin et al. 2014] format
using the software labelme2coco [Xu 2019] with a training-
test split of 80 %. Examples of manually segmented plagioclase

crystals are presented in Figure 5B. No validation data is used
in the present manuscript as the intention is not to introduce a
benchmarking dataset or mAP score as these are not necessar-
ily absolute performance metrics and no model development
was performed.
Model training is performed through the MMDetection
open-source object detection toolbox [Chen et al. 2019b],
which provides flexible and easy-to-use implementations of
the most popular object detection, semantic segmentation, in-
stance segmentation, and many more types of models. All
three instance segmentation models considered in the present
work are implemented and readily available for training on
a custom dataset. Training was performed using SGD [Kiefer
andWolfowitz 1952] with variable learning rates and fixed de-
fault values for momentum and gradient decay. Data augmen-
tation is readily performed by MMDetection and throughout
the training procedure. Random resize, random flipping, and
random cropping were performed during all training proce-
dures to effectively enlarge the size of the training dataset and
help avoid overfitting models.
To optimise the training of the final model, a methodical ex-
periment was set up across all three models that were trained
using three different learning rates: 0.1, 0.01, and 0.001, each
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A B

C D

Figure 5: Training dataset and overview of trained models’ performance. [A] Example micrographs from the training dataset,
[B] manually segmented examples of the ground-truth labels used in the training data, and [C]–[D] testing scores of the three
different region-based instance segmentation models trained with various learning rates evaluated for bounding box and crystal
mask accuracy respectively. The implemented model was trained using stepped learning rates based on this result and chosen
to be DetectoRS model due to its high performance in tests—this model, once trained, clearly outperforms all others previously
trained. Note mAP scores (mean average precision) are a popular measure of performance in object detection. Here these are
maximised for best performance. Smoothing was applied using an exponential moving average method.

trained for 600 epochs. Testing mAP scores for each model
and learning rate during training are shown in Figure 5C; there
are no results for models with learning rates of 0.1 as their
SGD never converged and were rendered unusable. Note that
MMDetect only calculates COCO mAP using the first 100 de-
tections, so for images with over 100 objects present this caps
the maximum recall for those specific samples. Whilst it does
decrease the AP scores for those samples, this is irrespective
of the model used and the mAP scores can still be used qual-
itatively to compare performance. No NMS and prediction
score threshold was used during testing.
There are two clear trends from the results as both model
type and learning rate are seen to make a difference in model

performance. First of all, with the same learning rate, Mask
R-CNN is outperformed by both other models and HTC is always
outperformed by DetectoRS; this is no surprise as one is a
development of the other. Secondly, learning rate, 𝑙𝑟 , is seen
to play a crucial role where models trained with 𝑙𝑟 = 0.01
always outperform those with 𝑙𝑟 = 0.001 once testing losses
have stabilised.

DetectoRS was therefore chosen as the model used in all
subsequent segmentation work with a variable learning rate
over its 600 epochs of training time, starting at 0.01 for the first
400 epochs which is then reduced by a factor of 10 to 0.001 for
the next 100 epochs whereupon it is once again stepped down
to 0.0001 for the last 100 epochs. All other SGD parameters
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CBA

Figure 6: Variation of AP values on the testing dataset with respect to IoU threshold, crystal size, NMS and detection score
threshold. AP confidence intervals are showing the variability between different images. IoU thresholds are averaged over
between 0.5 and 0.95 when it is not a free variable [B]–[C] and likewise for NMS and detection score thresholds between 0.05
and 0.95 [A]–[B].

are kept fixed. This is done to enable SGD to find more op-
timum minima closer to (or at) the global minimum as lower
learning rates reduce the chance of skipping over such min-
ima. This training strategy had clearly worked as shown on
Figure 5C, the final DetectoRS model outperforms all previ-
ously trained ones and is therefore the best one to implement
for all subsequent work.

2.6 Model Performance

Before applying the final trained model to acquire data from
real sections, it is imperative that we understand the limita-
tions and behaviour of the model for a range of parameters
a user can change during inference. Therefore a set of ex-
periments were set up on the testing dataset to evaluate how
AP scores are affected by IoU threshold, grain size, detection
score threshold, and mask-NMS threshold. In these experi-
ments, AP was calculated using the COCO conventions, but
using all detections and not only the top 100 to better reflect its
use on real samples and remove the effect of capping the max-
imum recall value. All AP and IoU values are calculated for
segmentation masks only as these are the most important part
for petrographic purposes (such as calculating crystal shapes
and sizes).
The results are shown in Figure 6 with [A] showing the
variation of AP with respect to the IoU threshold for posi-
tive detection; in this case all AP values are averaged over all
scores and NMS thresholds between 0.05 and 0.95. Below 0.5
IoU, the model shows very good performance with AP close
to 0.8: not far off perfect precision and recall. There is a sig-
nificant drop off in performance at 0.75 IoU. This shows that
segmented crystal masks are not perfect, but a limit of 0.75
IoU is generally considered a good performance as it is used
as a strict performance metric. One should bear this in mind
when applying the model to tasks where exact mask shapes
are crucial, such as determining crystal habits; further training
on more labelled data will help improve this aspect. Figure 6B
shows the variation of mAP, averaged over IoU greater than
0.5, mask-NMS, and detection score thresholds, over differ-
ent object sizes. A standard definition of small, medium and
large object sizes from the COCO metric are used: denoting

small objects as less than 322 pixel area, medium as between
322 and 962 pixel area, and large as anything over 962 pixel
area. Clearly, segmentation results are best for the largest set
of crystals with medium not far behind, but model perfor-
mance drops off significantly for small crystals. This is due
to the deepest, semantically very strong, layer of the network
using a 32-fold downsampling of the input image, therefore
anything smaller than 322 pixel area may go missing. It is ad-
vised for users to make sure crystals of interest appear larger
in their images or they use this threshold in subsequent anal-
yses as an effective detection limit.
Finally, Figure 6C shows the variation of AP, averaged over
IoU greater than 0.5 as in COCO, with respect to NMS and
detection score thresholds. There is very little variation ob-
served between AP of 0.43 and 0.45 depending on the exact
thresholds used. One must note that best performance for this
set of samples was observed for low NMS thresholds (<0.5).
Score threshold on the whole made little difference unless set
too low (<0.1) decreasing model precision or too high (>0.9)
decreasing recall significantly. These values depend exactly
on the dataset used and users are encouraged to tune these
parameters through visual inspection for best performance.
It is important to note that the version of DetectoRS used
in this paper may not be the best optimised for the segmen-
tation task performed here. Various parameters, especially
training dataset size, may influence the final state and there-
fore the accuracy of the model which would require further
work. Overall, the collection and segmentation of the training
set required three weeks of manual work, whilst each training
run lasted 6–8 hours, cumulatively representing three days of
computational time.

3 EXAMPLE USAGE
With the MinDet model trained on ground-truth labels for
plagioclase feldspar crystals in basaltic composition igneous
rocks, an example use of the MinDet method is showcased to
analyse natural volcanic samples. Segmentation results were
used to produce CSDs and aspect ratio distributions to inter-
rogate the samples’ textural history. To assess the accuracy of
the present approach, the plots generated can be compared to
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published manually collected results. The following section is
merely a guide and by no means an exhaustive description of
the MinDet method’s capabilities.

3.1 The Skuggafjöll Eruption

Skuggafjöll is a NE–SW-striking hyaloclastite ridge between
the Mýrdalsjökull and Vatnajökull glaciers in southern Ice-
land [Jakobsson and Gudmundsson 2008]. Its lower slopes
are composed of pillow lavas occasionally intercalated with
hyaloclastite. The first complete textural and chemical de-
scription of hand-specimens from the edifice was carried out
by Neave et al. [2014] using standard manual point counting
and segmentation methods for the textural studies as well
as a combination of X-ray fluorescence, inductively coupled
plasma mass spectrometry, and electron microanalytical tools
for their chemical analyses. It was shown that geochemical
variability in whole-rock samples was best accounted for by
accumulation of plagioclase and olivine through a mush dis-
aggregation process prior to eruption. This model was sup-
ported by textural work on three samples showing two dis-
tinct crystal populations present. The first population is com-
posed of large disaggregated macrocrysts of plagioclase and
olivine which were part of a crystal mush. The second popu-
lation is composed of smaller clinopyroxene, plagioclase and
olivine crystals that is thought to have grown rapidly in an
event possibly associated with destabilisation of the mush and
magma storage zones at depth prior to eruption.
The manually acquired segmentation data from the Neave
et al. [2014] study provide an ideal validation dataset for the
MinDet method. The thin-sections used in the previous study
were mapped in panorama mode using circular polarised opti-
cal illumination and plagioclase crystals were segmented using
the trained DetectoRSmodel on a CPU-only cluster computer.
1000×1000 pixel tiles with 250 px overlap were sliced out from
the panorama images, they were individually segmented and
re-stitched using the custom tiling subroutine. Any instances
with a detection score below 0.8 or with mask overlap above
0.5 were removed using NMS. Dimensions and shapes of in-
dividual shape masks were calculated using a best-fit ellipse
approach and extracted from the final segmentations to be
used to determine textural properties directly.
Figure 7 shows the comparison between both approxi-
mate and corrected CSDs, and aspect ratio distributions from
the previous work using the manual segmentation approach
[Neave et al. 2014] and the new DL-based method presented
here. Best fit lines are the approximate CSDs are plotted using
two separate linear regressions for each population identified
in each plot; this is an identical procedure to that applied in
Neave et al. [2014]. This was purposefully done to allow for
the most transparent comparison possible with the published
dataset. The present work is not meant to imply which CSD
approach is most appropriate. There is impressive similarity
in the results of the new automated and old manual methods,
despite the possibility of bias inherent to each technique. This
is shown by the close similarities in lines of best fit for approx-
imate CSDs, points of inflections and aspect ratio values.
The characteristic crystal length (𝐿𝐷 ) of a population of
crystals can be found from regressions through CSDs, where

𝐿𝐷 is defined as −1/α with α being the slope. [Higgins and
Chandrasekharam 2007]. Prior work has established that the
approximate CSDs for these Skuggafjöll samples show 𝐿𝐷 ,
modelled as square root of crystal area, of 70–100 µm for the
population of smaller macrocrysts and 700–1030 µm for the
larger population [Neave et al. 2014]. The present automated
segmentation approach with MinDet yields very similar val-
ues of 80–100 µm and 590–1090 µm for the small and large
macrocryst populations respectively, as calculated from the
slopes in Figure 7. Likewise the pronounced inflections in
the approximate CSDs are calculated to occur at square root
crystal areas of 555–590 µm, in agreement with the reported
approximate value of 600 µm previously [Neave et al. 2014].
A change in crystal populations is also evident in the mean
aspect ratio plots at the approximately identical crystal sizes,
with the large macrocrysts exhibiting low aspect ratio (∼2)
with the smaller crystals showing a continuously increasing
trend with decreasing crystal size. Note there are some devia-
tions between the two sets of aspect ratio values, but they are
within the error bars as indicated. Both the manual [Neave et
al. 2014] and the present work used a best-fit ellipse method to
calculate these crystal parameters that help to eliminate any
effects other than segmentation method. If a different mea-
surement method was applied the presence of systematic dif-
ferences may be expected.
Stereologically corrected CSDs were calculated using the
data from Neave et al. [2014] and the methods from Higgins
[2000] as shown in the bottom row of Figure 7. Best fit crystal
habits were determined using the methods indicated [Morgan
and Jerram 2006; Mangler et al. 2022]. All CSDs show very
close matches, for both gradients and points of inflection, re-
gardless of the crystal habits determined. As all samples are
composed of mixed populations all determined crystal habits
showed poor fits, therefore subtle variations in the distribution
of slice shapes can cause the discrepancies in determined crys-
tal habits. As explained in a previous section, and in Figure 6,
mAP scores are not 1 and therefore subtle differences in shape
compared to manual segmentations are expected. These may
be enough to create the discrepancies within the crystal habits
determined. However, this is not a focus of the present study
and requires further work. This discrepancy may be elimi-
nated using a larger, more extensive training set for such stud-
ies; note that this does involve an increased volume of manual
work.
The major advantage of the present automated approach
lies in the time-saving in processing large datasets that are un-
reasonably time-consuming when performed manually. The
above manual example from Neave et al. [2014] is reported to
have taken the authors approximately 12 hours of segmenta-
tion time for a single phase per thin-section scan. Using an
automated approach eliminates the human time for segmen-
tation, with the DL method taking 1–2 hours of computational
time per section for segmentation using CPU only; the avail-
ability of GPUs will reduce this to around 30 minutes or less
per thin-section. This example serves as a useful validation
for the accuracy and applicability of such automated methods,
given the models are trained correctly.
Furthermore, as the most time-consuming part of the seg-
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Figure 7: Comparison of MinDet automated results from this study with manual segmentation from Neave et al. [2014] for
Skuggafjöll crystal size and aspect ratio distributions. [top] Comparison of MinDet output (blue symbols, black lines) with
Neave et al. [2014] manual segmentation (red lines). The method for converting crystal shapes into approximate CSD was that
described in Neave et al. [2014] in this case. A best-fit line is not provided for crystals >600 µm in SKU11-01B as most bins are
underfilled, containing either one or no crystals at all. These panels are provided for data comparison purposes only. [middle]
Comparison of calculated mean aspect ratios using the method of Neave et al. [2014]; RMSE values are shown for each sample
between the present andNeave et al. [2014] datasets. Bins with no error bars contain only a single crystal measurement. [bottom]
Comparison of MinDet output (black lines) with manual segmentation from Neave et al. [2014] (red lines) using stereologically
corrected CSDs. The method for stereological corrections by Higgins [2000] was used in this case. Note that S/I values were
determined to ±0.04–0.06 error with I/L showing ±0.21–0.25 error; as all samples are composed of mixed populations all
determined crystal habits showed poor fits.

mentation process can be eliminated, it is now possible to
perform rapid plagioclase crystal segmentation for the entire
suite of 27 thin-sections of samples of pillow basalt from Skug-
gafjöll. These were imaged in panorama mode and processed
almost identically to the previous examples, with a size thresh-
old of 100µm square root crystal area. Stereological correc-
tions were applied, as according to Higgins [2000], using the
best fit crystal shapes as determined using ShapeCalc [Man-
gler et al. 2022]. CSDs for all samples are shown in Figure 8(a)
with Bayesian piece-wise linear regression calculated using a
single breakpoint for kinked CSDs and Bayesian linear regres-
sion for the two samples showing straight line CSDs. This is

done using the Python package emcee [Foreman-Mackey et al.
2013] using Markov-chain Monte Carlo (MCMC) [Andrieu et
al. 2003]. Uniform priors are set for all parameters; the bounds
for these were set as [−20, 0] for α1 and α2, [−20, 20] for 𝑙𝑛(𝑛°)
and [0.5, 5] for break points. Their joint posterior distribu-
tions are fitted from the 90,000 samples drawn by the MCMC
procedure after discarding the initial burn-in period. This ap-
proach allows one to take into account the uncertainties in the
CSD density values and report the fitted parameters with their
uncertainties. Figure 8B shows the plots between each fitted
parameter with one standard deviation shown where appro-
priate. α1 and α2 are the gradients of the CSDs as shown;
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A B

α1

α2

α1

Figure 8: Stereologically corrected crystal size distribution of plagioclase for the entire Skuggafjöll suite of thin-sections, ex-
cluding hyaloclastites, as segmented using the DL method presented [A] Bayesian piece-wise linear regression modelling of all
but four CSDs with a single breakpoint, the remaining two exhibit straight CSDs and bayesian linear regression was performed
instead. These were performed using an MCMC approach; [B] Plots showing the relationships between the four parameters
obtained from the regression: the breakpoint and the two different gradient values and ln(n°), the natural logarithm of the nu-
cleation density as shown. Quantification of the mean and 1 standard deviation spread of the fitted parameters was calculated
fitted posterior joint distributions therefore taking into account the uncertainties in the stereological correction. The two sam-
ples showing highly uncertain α2 and break point values were borderline between straight line and kinked CSDs, therefore they
were processed with the piece-wise model.

the straight line CSDs do not have a breakpoint and their
gradients are treated as α1, with α2 naturally set as 0. α1
values have a mean of −5.3 mm−1, suggesting average 𝐿𝐷 of
190µm length. α2’s have a mean of −1.37 mm−1 meaning av-
erage 𝐿𝐷 is approximately 730µm for the large macrocrysts.
Breakpoints cluster around 1.5mm length, but show signifi-
cant variability with a standard deviation of 150µm. A strong
correlation may be observed between the α1 and breakpoint
results that are absent from all the other plots. Values of α2
and 𝑛 are constant within their respective uncertainties. This
suggests that breakpoint values are controlled by α1, the slope
of the small crystal population’s distribution. Note the power
of this method is displayed well in Figure 8 showing two sam-
ples where manually segmentation produced slightly kinked
CSDs but MinDet results show poor fits for α2 and break point
values. This poor fit is shown by very high uncertainties in
Figure 8B, though these samples do overlap with the other
values. This shows they are described sufficiently well by
both straight line and kinked CSD models without having to
decide which model may fit better and therefore biasing the
procedure.
The above results reveal that the vast majority of these sam-
ples share a history of textural evolution driven by two distinct
stages of cooling and crystallisation as also observed in prior
bulk rock chemical analyses, with the major changes relating
to the proportion of macrocrysts present [Neave et al. 2014].
The macrocryst proportions are controlled by the amount of
disaggregating mush entrained within each sample and their
distribution is a constant across all samples. The major vari-
able across the sample suite is the slope of the fine grained
phenocryst population which is controlled by the timescale of
growth of these crystals. This example from Skuggafjöll

demonstrates the power of large-scale crystal segmentation.
In less than 48 hours of computational time, it was possible
to segment large-area scans for 27 thin-sections, resulting in
over 38,000 crystal segmentations over the 100 µm size thresh-
old. Based on the manual segmentation times mentioned
previously, such a task would require around 300 hours of
active manual segmentation time—unreasonably long for the
vast majority of studies. Such holistic analyses may provide
a much clearer picture of the magmatic history in this case
as well as increasing the reliability of the conclusions drawn
from them by reducing the uncertainty from only being able to
analyse a subset of the available samples. It is hoped that auto-
mated segmentation will allow more petrologists to make use
of such data-driven analyses and help advance related fields
significantly more swiftly.

3.2 Crystal Shape and Crystallisation Time

As shown by Holness [2014], the mean aspect ratio, 𝐴, of pla-
gioclase grains measured in dykes and sills can be calibrated
with their crystallisation time, 𝑡, with a simple linear parame-
terisation: log10 (𝑡) = 𝑚𝐴 + 𝑐, where 𝑚 and 𝑐 are parameters
to be fitted. A selection of samples that Holness [2014] used to
build the calibration were imaged for this study in panorama
mode using circular polarised optics as described for the pre-
vious set of samples discussed. Input images were sliced to
1000×1000 px with 250 px overlap. The NMS threshold was
set at 0.5 IoU overlap and the score threshold at 0.8 as be-
fore. The resulting segmentations were used to calculate crys-
tal sizes and aspect ratios.
Figure 9 shows a plot of published aspect ratio data [Holness
2014; Holness et al. 2017] compared to the values obtained in
the present study. Bootstrap sampling was used to obtain the
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Figure 9: Comparison of aspect ratio values obtained fromHol-
ness [2014] and using the present approach. The red line shows
the 1:1 line. The 95 % confidence intervals (±2σ) were calcu-
lated using the identical bootstrapping method from the previ-
ous work. Pearson’s correlation coefficient (r) shows a strong
correlation does exist between the two datasets, although they
clearly do not lie on the 1:1 line.

confidence intervals shown as performed by Holness [2014].
This is suitable as the distribution of aspect ratios in each sec-
tion are only samples from the true population distribution.
By re-sampling, as done using the bootstrap method, the vari-
ance of possible means can be quantified and therefore the
confidence level in having obtained the true population mean
is also quantified. The 1:1 line is plotted for illustrative pur-
poses. A systematic difference in the values from automatic
and manual characterisation is clear from the plot. This is in
contrast to the previous section where automatic and manual
segmentation values were in good agreement. The observed
differences arise from the differences in aspect ratio measure-
ments used by the two approaches. The manual approach of
Holness [2014] involves picking and drawing on perpendicular
sets of long and short axes for all visible grains in a section.
This approach is significantly faster than manually segment-
ing crystal masks [e.g. Neave et al. 2014]. Nevertheless, the
measured lengths and aspect ratios rely upon different sets of
assumptions and biases on where to place such axes which
may be ambiguous for irregularly shaped crystals. Such as-
sumptions may be cause of the mismatch between the results
of Holness [2014] and the DL automatic segmentation method.
This is in contrast to the results of the previous section where
the crystal-outline segmentation results of Neave et al. [2014]
were in good agreement with our DL approach. Rather than
invalidating the observations of Holness [2014], this mismatch
highlights the importance of consistency, in terms measure-
ment techniques employed, required for such analytical work
[Higgins 2000]. The fact that covariation in the two sets of
values is clearly systematic (Pearson’s correlation coefficient:
𝑟 = 0.815), and not due to random segmentation errors, one
may be confident the DL-based method is also capturing real
signals and real information from the thin-section scans. Sim-
ilarly to the previous work, it is found that the one sample

taken from close to the margin of a sill exhibits anomalous
grain shape of significantly lower average aspect ratio than
expected from the calculated crystallisation times; this refers
to the yellow data point with 2.3 aspect ratio and lower than
10−1 years crystallisation time. This is attributed to extensive
through-flow of magma within the body of intrusion provid-
ing additional heat to the margins, melting back some of the
original chilled margin [Holness 2022]. This change in the heat
balance leads to longer cooling times in the areas of such melt-
back leading to the observed anomalous grain shapes. These
anomalous samples were removed from the regression analy-
sis described below in order to mitigate the effects of physical
processes not included in the original cooling calculations.
The results presented above were used to develop a calibra-
tion of crystallisation time as a function of aspect ratio where
the aspect ratio is calculated on the basis of best-fit ellipses to
whole crystal area segmentations. For robust fitting of crys-
tal shape and crystallisation time, a Bayesian linear regression
approach was used to find the mean crystallisation time as a
function of aspect ratio, using MCMC once again, using the
Python package emcee [Foreman-Mackey et al. 2013]. The
model fitted is analogous to the calibration used by Holness
[2014]: log10 (𝑡) = 𝑚𝐴 + 𝑐, where 𝑡 is crystallisation time, 𝐴
is aspect ratio and 𝑚 and 𝑐 are parameters to be fitted. Uni-
form priors were set as [−20, 20] and [0, 40] for 𝑚 and 𝑐

respectively, drawing 250,000 samples to construct the poste-
rior joint distribution after the intial burn-in period is removed.
The calibration is shown on Figure 10A plotted with the data
with the posterior joint distribution for𝑚 and 𝑐 plotted on Fig-
ure 10B. This method is robust to noise, takes account of the
uncertainty in the observations and provides confidence inter-
vals for the calibration. However, one must keep in mind that
this is still only a simple physical model that only takes sliced
crystal aspect ratios into account and does not consider the
true three dimensional shape of crystals. One further caveat
is that this model is only fitted to rocks from intrusive bodies
that had undergone complete crystallisation and therefore it
may not be applicable for crystals from other settings, such as
those grown free floating in liquid.

4 CONCLUSIONS
The MinDet toolbox, using deep learning-based image seg-
mentation, is presented for the textural analyses of petrolog-
ical thin-sections. In this paper the method is focussed on
plagioclase feldspar and called MinDet1. Instance segmenta-
tion models were trained on manually segmented images of
plagioclase crystals in samples of basaltic composition. These
images were acquired using circular polarising optics on a
petrographic microscope. The best-performing segmentation
model was used for the analysis of new samples to showcase
the method’s potential. This automated approach was shown
to be able to replace days of manual segmentation work per
sample with only 1–2 hours of computational time; such time
saving can enable petrologists to analyse more samples and
larger areas. In addition, relevant software was developed in
conjunction to interface the acquired images with the segmen-
tation models and to post-process the final crystal masks into a
petrographically useful form. This includes the development
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A B

Figure 10: Calibration for expected time of crystallisation of plagioclase based on population shape distribution. [A] Plot of
log10 (𝑡) against crystal aspect ratio showing the best fit relationship and confidence intervals for the fitting based on the MCMC
samples generated. [B] Posterior joint distribution of the two parameters of themodel log10 (𝑡) = 𝑚𝐴+𝑐, where 𝑡 is crystallisation
time, 𝐴 is aspect ratio and 𝑚 and 𝑐 are fitted parameters.

of a new mask-NMS algorithm to deal with overlapping seg-
mentation proposals as well as the incorporation of popular
Python libraries for image analysis and data processing.

The trained model was applied to two well-characterised
sample sets from published material. First, thin-sections of
sub-glacial pillow basalts, whose textures had been quantified
through a slow manual approach [Neave et al. 2014], were
used to validate the segmentation results of plagioclase crys-
tals. The resulting CSDs and aspect ratio distributions for the
three samples were an almost identical match between the
manual and new automated method. Textural characterisa-
tion involving all other samples from this Skuggafjöll suite was
presented in addition to a novel approach to detect variabil-
ity using a piecewise segmentation method. The main power
of such automated methods was presented making use of the
large-scale study of Holness [2014] to create a new probabilis-
tic calibration of sill and dyke crystallisation time and mean
apparent crystal aspect ratio.

It is now possible to rapidly obtain plagioclase textural in-
formation for large sample suites with minimal user interven-
tion required. This quantitative textural data can be used
to constrain the timescale of igneous processes. The present
method may now readily be used alongside well-established
high-throughput timescale measurement approaches such as
diffusion chronometry to better understand igneous processes
and improve the quality of timescale estimates overall. More
data-driven approaches for textural quantification must be de-
veloped to realise the full potential of this approach. The
above work must also be extended to further mineral groups
to allow for full-scale automated petrographic descriptions.
Such methods will undoubtedly require vast amounts of train-
ing data, though it is technologically feasible as shown in the
present work.
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