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ABSTRACT
We present Thermobar, a new open-source Python3 package for calculating pressures, temperatures, and melt compositions
from mineral and mineral-melt equilibria. Thermobar allows users to perform calculations with >100 popular parameteriza-
tions involving liquid, olivine-liquid, olivine-spinel, pyroxene only, pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar,
amphibole only, amphibole-liquid, amphibole-plagioclase and garnet equilibria. Thermobar is the first open-source tool which
can match up all possible pairs of phases from a given region, and apply various equilibrium tests to identify pairs from which
to calculate pressures and temperatures (e.g. pyroxene-liquid, two pyroxene, feldspar-liquid, two feldspar, amphibole-liquid).
Thermobar also contains functions allowing users to propagate analytical errors using Monte Carlo methods, convert pressures
to depths using different crustal density profiles, plot mineral classification and mineral-melt equilibrium diagrams, calculate
liquid viscosities, and convert between oxygen fugacity values, buffer positions and Fe speciation in a silicate melt. Thermobar
can be downloaded using pip, and extensive documentation is available at https://bit.ly/ThermobarRTD.

KEYWORDS: Open-source; Thermobarometry; Python; Clinopyroxene; Monte-carlo; Plagioclase; Hygrometry.

1 INTRODUCTION
Determining the pressures and temperatures of formation or
equilibration of igneous phases in the Earth’s crust and man-
tle (thermobarometry), and the melt compositions from which
these phases grew (hygrometry and chemometry), is critical
for understanding the behavior of magmatic systems, and for
placing them in their geodynamic and tectonic contexts. Es-
timates of temperature have been used by a wide range of
petrologic studies to investigate many important questions in
igneous petrology, including the long-term temperature evo-
lution of magmas [e.g. Bachmann and Dungan 2002; Szy-
manowski et al. 2017; Rout et al. 2021], distinguishing between
primary and recycled magmatic crystals [Walker et al. 2013],
interpreting magma reservoir dynamics [e.g. Evans et al. 2016;
Caricchi et al. 2020], and constraining timescales of magmatic
processes [e.g. Cooper 2019; Shamloo and Till 2019; Mutch
et al. 2021]. Estimating the pressures (and therefore depths)
at which various magmatic processes occur is also fundamen-
tal to our understanding of igneous processes. For example,
evaluating magma storage depths in arcs plays a vital role in
determining the growth, chemical, and structural evolution of
the Earth’s crust [e.g. Rudnick 1995; Ducea et al. 2015; Lee
and Anderson 2015]. Precisely constraining magma storage
depths beneath active volcanic centers helps to inform risk
evaluation during periods of volcanic unrest [e.g. Stock et al.
2018; Andrews et al. 2019; Pritchard et al. 2019]. Hygrometry,
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which calculates the H2O content of melts, can be used to help
understand the processes triggering eruptions, differences in
eruptive behavior [Waters and Lange 2015; Stock et al. 2016],
and to help constrain H2O-sensitive melt properties such as
viscosity and temperature. Finally, chemometry, which uses
the composition of mineral phases to estimate melt major ele-
ment contents, is often used to provide insights into the range
of magma compositions fractionating within a given volcanic
system [Zhang et al. 2017].
Mineral and mineral-melt barometers, thermometers, hy-
grometers, and chemometers are based on the thermodynam-
ics of reactions that occur in igneous systems. For example,
equilibria with significant volume differences between prod-
ucts and reactants are sensitive to pressure, whereas those
with entropy differences are sensitive to temperature. Specific
phase equilibria are also sensitive to melt H2O content, act-
ing as hygrometers [e.g. Waters and Lange 2015; Gavrilenko
et al. 2016], and silicate melt composition (acting as chemome-
ters). In reality, while thermodynamics is often used to deter-
mine which components are expected to correlate with pres-
sure, temperature or water content, the coefficients attached
to these components are calibrated empirically using experi-
ments.
While a number of alternative methods exist to estimate
magma storage pressures (e.g. geophysical studies, melt inclu-
sion saturation depths), mineral-only andmineral-melt barom-
etry remains one of the most versatile. Unlike geophysical
methods, mineral barometry can be applied to volcanoes with
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Table 1: List of abbreviations

Geological Abbreviations

𝑃 Pressure
𝑇 Temperature
Ol Olivine
Liq Liquid
Cpx Clinopyroxene
Opx Orthopyroxene
Fspar Feldspar
Plag Plagioclase Feldspar
Kspar Potassium Feldspar
Amp Amphibole
Sp Spinel
Gt Garnet

An, Ab, Or Anorthite, Albite, and Orthoclase compo-
nent

𝐾D
Distribution coefficient of Fe-Mg between
Phase 1 & Phase 2

DiHd Diopside-Hedenbergite component
EnFs Enstatite-Ferrosilite component
CaTs Ca-Tschermak’s component
Jd Jadeite component
Mg# Mg/(Mg+Fe) atomic

Python Jargon
pandas (pd.) A Python library allowing handling of

spreadsheet-like data structures

NumPy (np.)
A Python library that handles the under-
lying math of most calculations (e.g. log,
exp)

Matplotlib
(plt.) A Python library used for plotting
String (str) A piece of text
Float (float) A single number that is not an integer
Integer (int) A single number that is an integer
pandas Series A 1D column of data

pandas
DataFrame

A 2D data structure (labelled column head-
ings, rows). Can visualize as a collection
of pandas series (like a single sheet in an
Excel spreadsheet)

Dictionary
(dict)

Look-up tables from one value to another.
In Thermobar, they are frequently used
to store multiple pandas dataframes, each
associated with a specific "key". These
dataframes can be thought of as separate
sheets in a single Excel spreadsheet (i.e.
the dictionary) with the key corresponding
to the sheet name

no ground-based monitoring equipment, to quiescent, dor-
mant, extinct, and heavily eroded volcanic systems, and to
ancient volcanic deposits. Additionally, unlike melt inclusion
studies which rely on the collection of rapidly cooled tephra
samples to minimise diffusive H2O-loss and inclusion crystal-
lization, mineral barometers can be applied to tephra, slowly
cooled lava flows, and igneous intrusions. Similarly, although

mineral-melt hygrometry provides a less direct measure of
H2O contents than measurements of melt inclusions or H+
measurements in minerals, it is an invaluable tool in extru-
sive rocks which have undergone sufficiently slow cooling that
melt inclusions and minerals have likely lost their H+ by dif-
fusion [Gaetani et al. 2012]. Finally, a near absence of alterna-
tive methods to determine temperatures of magmatic storage
means that mineral-melt thermometry is a very widely used
technique.
The wide utility of barometry, thermometry, and hygrom-
etry is reflected in the hundreds of different expressions re-
lating the composition of igneous phases to intensive param-
eters such as 𝑇 , 𝑃, H2O, and melt composition. There have
also been a number of papers assessing their relative strengths
and pitfalls, and updating older models when new experi-
mental data emerges. In particular, the review of Putirka
[2008] summarized the most popular thermobarometers, and
provided a number of new equations calibrated on experi-
mental data available in LEPR (library of experimental phase
relations, [Hirschmann et al. 2008]). Alongside this review,
K. Putirka released a series of Excel workbooks∗. These
spreadsheets are widely used by the community to perform
thermobarometry calculations. New thermobarometers pub-
lished since this review are available as Excel spreadsheets
[e.g. Masotta et al. 2013; Pu et al. 2017], Excel spreadsheets
and Python scripts [e.g. Brugman and Till 2019], or Excel
spreadsheets and Matlab scripts [e.g. Waters and Lange 2015].
However, a number of other models have no publicly avail-
able tool [e.g. Sugawara 2000; Mutch et al. 2016], although
resources can sometimes be obtained upon request through
the authors. This myriad of different tools, with different in-
put and output structures, means that performing calculations
on a variety of different mineral species within a given vol-
canic system is very time consuming, and requires users to
repeatedly reformat their chemical data. The fact that results
from different equations can’t be easily calculated within a sin-
gle tool has hindered detailed comparisons between available
thermobarometers for a given phase. There is also often little
independent quality control or benchmarking, so numerous
supplementary spreadsheets contain errors (and there is no
version control showing when errors are fixed).
Additionally, a number of methods have been developed in
recent years which are very difficult to perform in a spread-
sheet. For example, it is common that only a narrow range
of melt compositions will be erupted in any given phase of a
volcanic system, while the erupted crystal cargo may be very
chemically diverse, having grown from a range of melt com-
positions undergoing chemical differentiation at depth. Thus,
it is very challenging to identify an equilibrium melt compo-
sition for a given erupted mineral assemblage in order to per-
form meaningful thermobarometric calculations.
One solution to this problem was developed by Winpenny
and Maclennan [2011], who considered all possible pairings of
erupted Cpx compositions from a single flow (Borgarhraun,
Iceland) with a compilation of 1000 whole-rock and glass anal-
yses from other Icelandic eruptions. They only perform ther-
mobarometry on Cpx-Liq pairs in equilibrium based on Fe-
∗Currently available at: https://bit.ly/PutirkaSpreadsheets.
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Mg and trace element partitioning laws. This method was
adapted by Neave and Putirka [2017], who used filters as-
sessing the degree of equilibrium in terms of the Enstatite-
Ferrosilite (EnFs), Calcium-Tschermak (CaTs), and Diopside-
Hedenbergite (DiHd) components, as well as Fe-Mg equilib-
rium (but did not use trace elements). These "melt matching"
methods are powerful but are unsuited to spreadsheet cal-
culations; evaluating all possible pairs for 1000 liquids and
200 Cpx would require a spreadsheet with 200,000 rows. In
addition, many of these calculations must be performed it-
eratively, as the equilibrium test values depend on 𝑃 and 𝑇 .
For example, assessing Fe-Mg equilibrium requires knowledge
of the temperature, which in turn requires knowledge of the
pressure. This makes these calculations very computationally
expensive. Although different scripting-based solutions have
been developed for calculations of this type, none are publicly
available at the time of writing, or particularly computation-
ally efficient (taking tens of minutes to assess several hundred
Cpx-Liq pairs).
Finally, most existing tools have no efficient way to propa-
gate uncertainties in input parameters (e.g. using Monte Carlo
methods) without having to manually duplicate thousands of
inputs. This has meant that there has been very limited assess-
ment of the random errors associated with thermobarometric
studies.

2 Thermobar: AN OPEN-SOURCE SOLUTION
To address the shortage of user-friendly tools for performing
popular and advanced calculations, we present a new software
tool: Thermobar, written in the open-source language Python3
(which is growing in popularity within the Earth Sciences;
[Petrelli 2021]). Thermobar focuses on thermobarometry, hy-
grometry and chemometry applicable to the crystallization of
igneous phases from silicate melts within the crust and upper
mantle, including >100 expressions relating to equilibrium
for liquid, olivine-liquid, olivine-spinel, pyroxene, pyroxene-
liquid, amphibole, amphibole-liquid, amphibole-plagioclase,
garnet, feldspar, and feldspar-liquid equilibrium (Table 1, Fig-
ure 1). The full list of thermometers, barometers, and hygrom-
eters available in Thermobar, along with the relevant functions
and names used to select these equations are summarized in
Figures 1, 3 and A1–A8 at the end of this manuscript.
We do not consider parameterizations calculating the con-
ditions at which primitive liquids last equilibrated with their
mantle sources [see Till 2017]. Based on the complexities as-
sociated with the local installation of thermodynamic software
tools, we also don’t provide calculation tools for geothermo-
barometers developed using rhyoliteMELTS as a framework
[e.g. Gualda and Ghiorso 2014; Harmon et al. 2018], thermo-
dynamic models of Fe-Ti oxides relying on ThermoEngine,
[Ghiorso and Prissel 2020], or thermobarometers used heavily
within the field of metamorphic petrology (e.g. Thermocalc,
Perple-X, THERIAK-DOMINO [Powell et al. 1998; Connolly and
Petrini 2002; de Capitani and Petrakakis 2010]).
For maximum versatility, Thermobar allows users to eas-
ily swap between different barometry, thermometry and hy-
grometry equations, and to iterate towards a solution when
the system is under-constrained (e.g. solving for pressure and

temperature, or H2O contents and temperature). Addition-
ally, we provide a number of functions for assessing equi-
librium, mineral-liquid and mineral-mineral matching, and
Monte Carlo error propagation. Thermobar has been exten-
sively benchmarked to demonstrate that it gives the same re-
sults as existing tools∗.

3 Thermobar STRUCTURE
3.1 Installation

Thermobar can be installed locally on Python versions >=3.7
using the command from either the command prompt (Win-
dows) or the terminal (Mac):

pip install Thermobar

For Python beginners, we recommend using Jupyter environ-
ments (e.g. Jupyter Lab and Jupyter Notebook), in which case,
Thermobar can be installed in a similar way within a code cell
with an additional "!":

!pip install Thermobar

After installation, the user must load Thermobar into their
script (here we load Thermobar as pt, but users could choose
any letters they wish):

import Thermobar as pt

Any function from Thermobar is then called by typing the cho-
sen abbreviation, followed by a dot, followed by the function
name. For example, to use the function to calculate liquid-only
temperatures:

pt.calculate_liq_only_temp(args)

Input variables for the function are entered inside the brackets
(termed "arguments" , or args).
Documentation for each function, including information on
the required arguments, can be accessed using the help fea-
ture:

help(pt.calculate_liq_only_temp)

3.2 Python terminology

Thermobar makes extensive use of NumPy [Harris et al. 2020]
and pandas [The pandas development team 2020]. For the
plots shown in this paper, the plotting library matplotlib
is used [Hunter 2007]. We recommend importing all these
packages along with Thermobar at the start of the script (see
Figure 2):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Five main types of data are used in Thermobar (Table 1):
∗see https://bit.ly/ThermobarBenchmarking
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Equilibrium Olivine Contents:

Equilibrium tests:

Lines for Rhodes Diagrams:

Ternary Diagrams:

equationP
equationT

P_kbar_calc
T_K_calc

Delta_P_kbar_Iter
Delta_T_K_Iter

Step 1
Format data as
.xlsx, .xls, .csv

Step 4
Choose function, specify equationT, equationP, equationH and dataframes from step 3

Step 2
Read data into a dictionary
with a default structure

Step 3
Extract dataframes of each phase

from dictionary
out=pt.import_excel('filename.xlsx') Cpxs=out['Cpxs']

Liqs=out['Liqs']
...

e.g., calculate_cpx_only_temp(),
calculate_cpx_liq_temp()

Calculate Temperature
(for known P, H2O content)

e.g., calculate_cpx_only_press()
calculate_cpx_liq_press()

calculate_eq_ol_content()

calculate_cpx_liq_eq_tests()
calculate_cpx_opx_eq_tests()
calculate_plag_liq_eq_tests()

add_noise_sample_1phase(), calculate_bootstrap_mixes(),
av_noise_samples_series()

calculate_ol_rhodes_diagram_lines()
calculate_opx_rhodes_diagram_lines()
calculate_cpx_rhodes_diagram_lines()

plot_fspar_classifica�on()
plot_px_classifica�on()

calculate_viscosity_giordano_2008()

convert_oxide_percent_to_
element_weight_percent()

convert_fo2_to_fe_par��on()
convert_fe_par��on_to_fo2()
convert_fo2_to_buffer()

invert_generalised_mantle_geotherm()
mantle_geotherm_plot()generic_cali_plot(), return_cali_dataset()

convert_pressure_to_depth()

e.g., calculate_plag_liq_hygr()
calculate_ol_liq_hygr()

e.g., calculate_cpx_liq_press_temp_matching()
calculate_cpx_opx_press_temp_matching()

Similar functions for opx_liq, cpx_opx, plag_kspar,
kspar_liq, plag_liq, amp_liq

e.g., calculate_cpx_liq_press_temp()
calculate_cpx_opx_press_temp()

L1
L2

L3

Cpx1
Cpx2
Cpx3
Cpx4

Calculate Pressure
(for known T, H2O content)

Calculate H2O
(for known T, P)

Iteratively Calculate Pressure & Temperature

Mineral Equilibrium and Classification

Monte Carlo Error propagation

Other Useful Functions
Calculate Liquid Viscosity

Oxide wt% ↔ Element wt %

fO2 ↔ Buffer ↔ Fe3+/FeT

Calculate Geotherm
Comparing to Calibration Datasets

Converting Pressure to Depths

Calculate all Possible Pairs, Assess Equilibrium

,

Initial KD (Cpx-Liq) filter

U
se

rs
el
ec

ts
eq

ui
lib

riu
m

m
od

el
s
+
cu

to
ff

va
lu
es

Take pairs
in equilibrium

Take Cpx-Liq pairs
in equilibrium

Calculate:
ΔKD, ΔEnFs,
ΔDiHd, ΔCaTs

(as dependent)

calculate_cpx_liq_press_temp()

Output:
P_kbar, T_K

(+Cpx-Liq chem)

Output:
Mean_P_kbar,
Mean_T_K
std_P_kbar,
std_T_K

(+Cpx-Liq chem)

‘All_PTs’

‘Av_PTs’L1

L3

Cpx1

Cpx1

Av:

Phases Included
Liq Ol+Liq Amp (±Liq) Amp+Plag Kspar (±Liq)Cpx+Opx

Melt Mg#

M
in

M
g#

Ol+Sp Cpx (±Liq) Opx (±Liq) Plag (±Liq) Plag+Kspar Garnet

Figure 1: Schematic showing some of the functions available in Thermobar. Thermobar reads in data supplied from a spread-
sheet format. The import_excel function returns data as separate dataframes for each phase, combined into a single dictionary.
Once extracted from this dictionary, these dataframes can be fed into a number of different functions. In addition to simple cal-
culations of T, P, and H2O content, Thermobar allows users to iterate different equations for pressure and temperature, assess
all possible matches for pairs of phases, and perform a number of other calculations used by petrologists (e.g. calculating liquid
viscosity).
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1. "strings" are pieces of text (e.g. choosing which equation
to use in a function - equationP="P_Put2008_eq30").

2. Floats and integers are numbers, such as specifying P=5
(integer) or P=5.5 (float) to perform calculations at 5 kbar
and 5.5 kbar respectively.

3. pandas.Series can be thought of as a single column of
data (like a single column in an Excel spreadsheet).

4. pandas.DataFrames are like a single sheet in Excel,
comprising columns with clear column headings (and are
a collection of pandas.Series).

5. Dictionaries are look-up tables from one value to another.
In Thermobar, they are frequently used to store multiple
pandas dataframes, each associated with a specific "key".
These dataframes can be thought of as separate sheets in
a single Excel spreadsheet (i.e. the dictionary), with the
key corresponding to the sheet name.

3.3 Data input
Users should format their compositional data as an Excel
spreadsheet (.xlsx, .xls) or a comma separated values (.csv)
file, with each analysis having its own row, and oxide compo-
nents in wt.% oxide as column headings (Figure 2). The order
of columns does not matter, as columns are identified based on
their column heading, rather than position. This spreadsheet
can be imported into Thermobar using the import_excel
function, which recognises different phases based on the pres-
ence of an underscore followed by a phase identifier in column
headings. For example, the column heading "SiO2_Liq" tells
Thermobar that this is the column containing the SiO2 content
of the liquid/melt phase.
To link a specific bit of text (e.g. lab name of EPMA spot,
name of crystal, name of tephra sample, etc.) to each row of
oxide contents (i.e. each analysis), this text should be stored
in a column with the generic heading "Sample_ID_Phase", so
for Cpx this column would be "Sample_ID_Cpx", and for Opx
"Sample_ID_Opx". This column can be used to store any text
information the user wants, and will be returned from calcula-
tions along with other calculated parameters from Thermobar
functions. The full list of phase identifiers to use in headings
is given below:

• Liquid (_Liq)
• Olivine (_Ol)
• Clinopyroxene (_Cpx)
• Orthopyroxene (_Opx)
• Plagioclase (_Plag)
• Alkali feldspar (_Kspar)
• Spinel (_Sp)
• Amphibole (_Amp)
• Garnet (_Gt)

If only a single phase composition is being loaded at each time
(e.g. just Liq compositions), there is no need for users to add
"_Liq" to each column heading. They can simply specify this

suffix in the import_excel function itself, which appends the
suffix onto every column name:

pt.import_excel('FileName.xlsx',
sheet_name='Sheet1', suffix="_Liq")

Thermobar also has a function import_excel_err which
recognises columns of the form "SiO2_Cpx_Err". These er-
rors can be absolute values, where SiO2_Cpx_Err=0.5 would
represent an error of ±0.5 wt.%. Alternatively, they can be
percentage errors, where SiO2_Cpx_Err=5 represents a ±5 %
error (e.g. for 60 wt.% SiO2, this would be equivalent to an
absolute error of ±3 wt.%). Users specify which error type
is loaded, and which error distribution they wish to use in
the function pt.add_noise_sample_1phase (e.g. specifying
"Abs" or "Perc" for absolute or percent errors, and "uniform"
vs. "normal" for the error distribution). Generating synthetic
analyses following different error distributions is described in
more detail in Section 9.
Both import functions read from the selected Excel spread-
sheet, and arrange the columns into a dataframe for each min-
eral phase. To address the fact that many literature datasets
have text values (strings) in certain cells (e.g. bdl, n.d, NA,
N/A), Thermobar automatically replaces any string in any ox-
ide column with a zero. If a given column heading Thermobar
is expecting is absent, this column is filled with zeros.
The dataframes for all Thermobar-supported phases are
collated into a pandas dictionary (named "out" in Figure 2).
The dataframes for each phase are accessed from this out-
put using dictionary_name['Phase_name'] (see Step 2, Fig-
ure 2), where phase names are the same as the column iden-
tifiers used in the input spreadsheet, with the addition of an
"s". For example, out['Cpxs'] returns the dataframe of Cpx
in Figure 2. For simplicity, and to create a uniform output
structure, if the input spreadsheet only contains columns with
the headings "_Liq", a dictionary will still be returned contain-
ing dataframes for all other phases, but these dataframes will
be filled with zeros. We recommend that dataframes are in-
spected before proceeding using the .head() function, which
displays the first 5 rows. Column heading for oxides that were
not present (or recognized) will be filled with zeros. If users
believe they specified a column heading, but it does not appear
in this dataframe, they should check for unusual characters in
oxide names, decimal points other than full stops (.), and/or
spaces before the column name in their spreadsheet. Inspect-
ing outputs at this stage allows these issues to be identified
before spurious calculations are performed.
In addition to "recognized" oxide column headings with
specified phase identifiers, users may include other column
names they wish. For example, for thermometry calcula-
tions, pressure derived from other sources, or metadata like
latitude, depth within a unit, may be useful. In Figure 2,
pressure is entered in a column labelled "P_kbar_MIs", which
records the average pressure calculated from melt inclusions
from the same sample. The exact name does not mat-
ter; a dataframe is present in the output dictionary named
"my_input", which contains all columns from the original
spreadsheet, and these additional columns can be accessed
at any time using my_input['Column_name'].
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Column order doesn’t matter

Phase identifier (tells
Thermobar this is a liquid)

Used for calculations of KD, enter Fe as 
FeOt, can specify a Fe3+/FeT ratio 

Extra columns, e.g., a P estimate from melt inclusions,
and a latitude that might be used for plotting

Second phase
(e.g. touching glass-plag analyses)

This installs Thermobar. It only needs to be run once on each computer. Put a # in front once you have run it 

This imports Thermobar after it is installed
This imports NumPy, used for various math operations
This imports pandas, used for data storage in spreadsheet-like formats
This imports Matplotlib which is used for making figures

Specify file and sheet. Returns a dictionary “out”
Extracts dataframe from dictionary with all columns from the spreadsheet

Extracts dataframe from dictionary with liquid compositions (from column headings with _Liq)
Extracts dataframe from dictionary with plag compositions (from column headings with _Plag)

As no columns with _Ol were entered, this dataframe will be full of zeros.  

Step 1 – Format data as .xslx, .csv, .xls

Step 2 – Install Thermobar, import packages

Step 3 – Import data, separate out different phases

Step 4 – Visually inspect the data to ensure it imported correctly

U
se

 S
cr
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ar
 to

 
se

e 
al

l c
ol

um
ns

Columns not in the spreadsheet get filled with zeros

Whatever text the user 
enters in the 

Sample_ID_{Phase} 
column is returned. Here 
we use the EPMA code 
for each Plag analysis, 

and the sample name for 
XRF whole-rock .

Returns the first 5 rows of a dataframe

Figure 2: Guide to data input. Step 1: Format data into a spreadsheet with oxide names followed by _phase. The order of
columns does not matter, and other columns can also be included in the input (e.g. estimates of pressure and temperature,
additional metadata, spatial data etc.). Step 2: Thermobar is imported, along with NumPy, pandas and matplotplib. Step 3:
The import_excel function extracts data from this spreadsheet into a set of dataframes with a specific column order. The
function returns a dictionary (named "out") where all these dataframes are stored with keys corresponding to different phases.
For example, the dataframe of liquids is extracted from this dictionary using the key "Liqs". All dictionary keys correspond to the
phase identifiers used for inputs with an added "s". If the input does not have specific column headings (e.g. no _Ol, _Kspar),
the dataframe for this phase will be filled with zeros. Step 4. Dataframes for each phase are inspected to check that the
spreadsheet has been read in correctly.
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3.4 Data outputs

Thermobar returns three main types of outputs. For simple
calculations, such as calculating temperature for a given melt
composition and pressure, it returns a pandas series (a single
column of data). For more complicated calculations with more
than one output (e.g. pressure and temperature for iterative
calculations, or when a user specifies they want equilibrium
parameters to be evaluated), it returns a pandas dataframe
(df). Any single column of a dataframe can be accessed
by specifying the column name in square brackets after the
name of the dataframe: df['column_name']. For calculations
where multiple dataframes are returned (e.g. for melt match-
ing, one dataframe is returned for all mineral-melt matches,
and another with the average for each mineral measurement),
these dataframes are stitched together into a dictionary. Each
dataframe can be retrieved using dict['df_name'].
At any point, the outputs of Thermobar can be written to an

Excel spreadsheet using the to_excel function of pandas. An
example of this is provided in the Liquid-only thermometry
section below.

3.5 Units

Thermobar performs all calculations using temperature in
Kelvin, pressure in kbar, and chemistry in wt.% for inputs,
and the same units for outputs. The only exception is that
for garnet, users can either have a column Ni_Gt in ppm or
NiO_Gt in wt.%.
3.6 Fe redox

For liquids, Thermobar allows users to specify how they par-
tition Fe between ferrous and ferric iron, because equilibrium
tests involving the partitioning of Fe2+ andMg between miner-
als and melt are sensitive to the proportion of Fe3+. To avoid
ambiguity, such as in cases where XRF data is reported as
Fe2O3, but the speciation is unknown compared to situations
when the proportions of FeO and Fe2O3 are known, total FeO
contents should be used in input spreadsheets for all phases
(labelled "FeOt_Liq", "FeOt_Cpx", etc.). To partition melt Fe
between redox states, the input spreadsheet may contain a
column labelled "Fe3Fet_Liq" specifying the decimal fraction
of Fe3+ vs. FeT in the liquid (e.g. Fe3Fet_Liq=0.2 specifies
20% Fe3+, 80 % Fe2+). None of the models considered here
require the user to enter Fe redox proportions in phases other
than liquid.
By default, functions involving liquid compositions use
the value of Fe3Fet_Liq in the input spreadsheet, which
is 0 if no column heading with this name is provided.
Fe3Fet_Liq can also be overwritten in each function itself
by specifying a fixed value (or referencing a different col-
umn in the input spreadsheet, e.g. Fe3Fet_Liq=0.4, or
Fe3Fet_Liq=df['column_name']).
Alternatively, the function convert_fo2_to_fe_partition
calculates the Fe3+/FeT ratio and partitions iron between FeO
and Fe2O3 for a specified oxygen fugacity, as well as a liquid
composition, pressure and temperature. Oxygen fugacity can
be input as a fO2 value, or a buffer position in terms of ΔQFM
or ΔNNO. This function allows users to calculate a Fe3+/FeT

ratio for each row in their input data, which can be then fed
into a thermobarometry function, rather than having to use a
fixed Fe3+/FeT ratio.

3.7 Warnings

Thermobar contains a number of warnings which should help
to direct users when they are using a model outside its calibra-
tion range. These are far from exhaustive, because they rely
on the original authors specifying calibration limits beyond
which their model should be used with care. For example, if
users enter any liquid compositions with SiO2 >68 wt.%, and
select the Cpx-Liq barometer of Neave and Putirka [2017], the
code will return the warning:
Some inputted liquids have SiO2>68 wt %, which exceeds
the upper calibration range of the Neave and Putirka (2017)
model".

3.8 Calibration ranges

In addition to pre-programmed warnings, the function
generic_cali_plot can be used to examine users phase com-
positions alongside the calibration dataset of different thermo-
barometry models in 𝑃 − 𝑇 − 𝑋 space (for models where the
dataset was published or obtained by the authors; e.g. Mutch
et al. [2016], Putirka [2016], and Ridolfi [2021] for Amp, Putirka
[2008], Masotta et al. [2013], Neave and Putirka [2017], Brug-
man and Till [2019], Petrelli [2021], Wang et al. [2021], and
Jorgenson et al. [2022] for Cpx, Waters and Lange [2015] and
Masotta and Mollo [2019] for Plag).
For example, to generate a plot showing Al2O3 vs. Mg#
(Mg/(Mg+Fe) atomic) of the user-entered amphibole composi-
tions stored in the dataframe "Amps1" alongside the calibration
data of Mutch et al. [2016]:

pt.generic_cali_plot(df=Amps1,
model="Mutch2016", x='Mgno_FeT',
y='Al2O3_Amp')

The order of the user data vs. calibration data can be ad-
justed, along with symbol size, color, transparency, etc. in this
custom function. Alternatively, the calibration dataset can be
obtained as a pandas dataframe allowing users to make their
own plots in matplotlib:
MutchData=pt.return_cali_dataset(model="Mutch2016")
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3.9 Worked examples
In this manuscript, we show a number of examples using
snippets of code. Entire workflows can be found on the
Read The Docs html webpage∗, with narrated examples on
the Thermobar YouTube channel†. The Jupyter Notebooks
and associated Excel files for these worked examples can be
downloaded directly from the Read The Docs page, or from
the Thermobar Github page‡. Available functions for phases
are summarized in Figure 3, and worked examples are cur-
rently available for the workflows listed below. We will add
additional examples in future, and are happy to take user re-
quests of worked examples they would like to see:

3.9.1 Liquid and Olivine-Liquid Equilibra
• Calculating temperature from liquid compositions, and
temperatures and H2O contents from olivine-liquid pairs.

• Considering all possible olivine-liquid pairs for calculat-
ing temperatures and/or H2O contents, and applying var-
ious equilibrium filters based on 𝐾D, Fe-Mg.

• Assessing the degree of Fe-Mg equilibrium for olivine-
liquid pairs, such as plotting a Rhodes diagram (Ol Fo
vs. Liq Mg#) with lines for different equilibrium models.
Examples exist for a single sample, and multiple sam-
ples (e.g. multiple phases from an eruption, or different
eruptive episodes).

• Calculating equilibrium olivine forsterite contents from
a specific melt composition using a variety of 𝐾D, Fe-Mg
models.

3.9.2 Cpx and Cpx-Liq Equilibra
• Calculating 𝑃 for known 𝑇 , 𝑇 for known 𝑃, and itera-
tively solving 𝑃 and 𝑇 for Cpx-only and Cpx-Liq pairs,
including assessment of various equilibrium tests. These
notebooks also show how to plot Cpx-Liq pairs on a
Rhodes diagram (mineral Mg# vs. Liq Mg#).

• Calculating 𝑃 and 𝑇 using Cpx-only and Cpx-Liq ma-
chine learning models (showing the additional installa-
tion steps required, see Section 7.1.1 for more discus-
sion).

• Plotting Cpx compositions on a ternary classification dia-
gram (En-Fs-Wo), with symbols colored by different pa-
rameters.

• Cpx-Liq melt matching recreating the studies of Scruggs
and Putirka [2018] and Gleeson et al. [2020].

3.9.3 Opx and Opx-Liquid Equilibra
• Calculating 𝑃 for known 𝑇 , 𝑇 for known 𝑃, iteratively
solving 𝑃 and 𝑇 for Opx-only and Opx-Liq pairs, includ-
ing assessment of 𝐾Ol-LiqD equilibrium. These notebooks
also show how to plot Opx-Liq pairs on a Rhodes dia-
gram.

∗https://bit.ly/ThermobarRTD
†https://bit.ly/ThermobarYouTube
‡https://bit.ly/ThermobarExamples

• Plotting Opx compositions on a ternary diagram (En-Fs-
Wo).

• Assessing all possible Opx-Liq pairs filtered by
𝐾D, Fe-Mg.

3.9.4 Two Pyroxene Equilibra
• Calculating 𝑃 for known 𝑇 , 𝑃 for known 𝑇 , iteratively
solving 𝑃 and 𝑇 , assessment of 𝐾Cpx-OpxD equilibrium.

• Assessing all possible Cpx-Opx matches filtered by
𝐾
Cpx-Opx
D .

3.9.5 Amp and Amp-Liq Equilibra
• Calculating 𝑃 for known 𝑇 , 𝑇 for known 𝑃, iteratively
solving 𝑃 and 𝑇 for Amp-only and Amp-Liquid pairs,
including assessment of 𝐾Amp-LiqD equilibrium.

• Calculating melt compositions, water contents and redox
states from Amp compositions using Putirka [2016] and
Zhang et al. [2017].

• Assessing all possible Amp-Liq matches filtered by
𝐾
Amp-Liq
D .

• Plotting Amp compositions on classification diagrams
following Leake et al. [1997].

3.9.6 Fspar and Fspar-Liq Equilibra
• Calculating 𝑇 for known 𝑃 and equilibrium tests for
Plag-Liq, Kspar-Liq, and Plag-Kspar equilibria, iteratively
solving 𝑃 and 𝑇 for Plag-Liq.

• Calculating H2O using various Plag-Liq hygrometers, in-
cluding iterating temperature and H2O towards a solu-
tion.

• Assessing all possible Plag-Liq, Kspar-Liq, and Plag-
Kspar matches filtered by various equilibrium tests pro-
posed by Putirka [2008].

• Plotting Plag and Kspar compositions on a ternary dia-
gram (An-Ab-Or).

3.9.7 Garnet and geotherm calculations
• Calculating 𝑇 , and 𝑃 for known 𝑇 using garnet compo-
sitions.

• Plotting garnet geotherms and garnet compositional sec-
tions.

3.9.8 Error Propagation
• Propagating analytical errors for Liq-only thermometry,
Cpx-Liq, and Cpx-only barometry (Errors can be propa-
gated for all phases, we just only show three examples).
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3.9.9 Melt Inclusion Equilibrium
• Integrating Thermobarwith VESIcal [Iacovino et al. 2021]
to iteratively calculate saturation pressure from melt in-
clusions with temperatures the melt inclusion composi-
tion, or paired analyses of the melt inclusion and host
crystal (e.g. Ol-Liq, Plag-Liq, Cpx-Liq, Opx-Liq, Amp-
Liq thermometry).

• Assessing Fe-Mg equilibration between melt inclusions
and host olivines, and host olivines and co-erupted ma-
trix glass.

3.9.10 Other Functions
• Calculating equilibriummineral compositions (Plag-Cpx-
Ol) for a specific liquid line of descent (from Petrolog3
[Danyushevsky and Plechov 2011] in this example).

• Plotting mineral and glass data with the calibration
dataset of different models in 𝑃 − 𝑇 − 𝑋 space.

• Converting from oxide wt.% to element wt.% (El wt.%
can be calculated with and without oxygen).

• Converting between Fe3+/FeT, fO2 and buffer position.

• Calculating silicate melt viscosity using the model of
Giordano et al. [2008].

• Converting pressures to depths using a variety of crustal
density models.

• Inverting generalised continental geotherms of Hasterok
and Chapman [2011] using thermobarometric data.

4 MINERAL-MELT COMPONENT CALCULATIONS
The underlying functions used for a wide range of different
thermobarometers, hygrometers, and chemometers calculate
mole and cation proportions and fractions for each mineral
(functions located within the core.py file). For example, the
function calculate_anhydrous_mol_proportions_liquid
calculates the anhydrous mole proportions
for user-specified liquid compositions, while
calculate_hydrous_cat_fractions_liquid cal-
culates cation fractions on a hydrous basis. The
functions calculate_6oxygens_orthopyroxene and
calculate_6oxygens_clinopyroxene calculate cations on
the basis of 6 oxygens for Opx and Cpx compositions, as well
as returning components such as AlVI and AlIV in Opx, and
the proportions of Enstatite (En), Ferrosillite (Fs) and Wollas-
tonite (Wo). The function calculate_23oxygens_amphibole
calculates cations on the basis of 23 oxygens for
Amp compositions. More advanced functions such as
calculate_clinopyroxene_liquid_components calculates
mole and cation fractions for Liq and Cpx compositions,
as well as various Cpx-Liq components (e.g. 𝐾Cpx-LiqD , the
lnK_Jd_DiHd_liq component used by Equation 33 of Putirka
[2008], and other terms used in different thermobarometers).
These core functions can be called to investigate natural
mineral and melt compositions, as part of workflows when
calibrating new thermobarometers, and for other petrological
calculations requiring these variables.

5 USEFUL PETROLOGIC PLOTS
To aid with the visualization of mineral compositions, and
the degree of mineral-melt equilibrium, we also include a
number of functions for plotting imported mineral data on
common classification diagrams. For example, the function
calculate_ol_rhodes_diagram_lines calculates the equi-
librium lines for an olivine-liquid equilibrium Rhodes Dia-
gram. Together with the functions calculate_liq_mgno and
calculate_ol_fo this allows users to easily plot olivines from
different eruptions against the co-erupted glass Mg#, with
equilibrium fields of their choosing overlain (Figure 4A). These
functions could also be applied to whole-rock data (also loaded
with _Liq suffixes) to assess olivine-whole rock relationships,
such as olivine accumulation.

Thermobar has functions for overlaying mineral com-
positions data on ternary plots, relying on the python-
ternary package from Harper et al. [2015]. The function
tern_points_px takes imported pyroxene compositions and
calculates the coordinates in En-Wo-Fs space, while the func-
tion plot_px_classification draws the plot and fields on
which to overlay these new coordinates (Figure 4B). Similarly,
tern_points_fspar calculates ternary coordinates in An-Ab-
Or space, and plot_fspar_classification draws the com-
position fields from Deer et al. [1992] on the figure (Figure 4C).
Example Jupyter notebooks show how to produce these plots
in detail can be found on the Read The Docs page∗ under
the section for each mineral. In the example used to make
Figure 4, we show how to color symbols by the FeOt content
in the feldspar. As these field boundaries and user data are
plotted using Matplotlib, users can easily customize the ap-
pearance of the figure, and could easily change the arguments
in the plt.scatter command to color for a different input
variable.

6 SINGLE-PHASE THERMOBAROMETERS AND
CHEMOMETERS

Thermobar contains a number of thermometers and barome-
ters based on the composition of a single phase:

• Liq-only thermometry
• Cpx-only thermometry and barometry
• Opx-only barometry
• Amp-only thermometry, barometry, and chemometry
• Gt-only thermometry and barometry

We discuss some examples for liquid-only thermometry, but
the flexibility of function inputs is the same for other single-
phase thermobarometers.

6.1 Liquid-only thermometers

Liquid-only thermometers vary widely in complexity. For ex-
ample, the thermometer of Helz and Thornber [1987] calcu-
lates the temperature of a liquid (i.e. melt) based solely on
the MgO content, while Equation 15 of Putirka [2008] uses the
MgO, FeO, Na2O, K2O, H2O content and Mg# of the liquid,
∗https://bit.ly/ThermobarRTD
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Liquid-only liq_only 🗸 ✗ ✗ N/A N/A ✗ ✗ ✗ 🗸 N/A N/A
Cpx-only cpx_only 🗸 🗸 🗸 N/A N/A ✗ ✗ ✗ 🗸 N/A N/A
Amp-only amp_only 🗸 🗸 🗸 N/A N/A 🗸*1 ✗ 🗸 🗸 N/A N/A
Opx-only opx_only ✗ 🗸 ✗ N/A N/A ✗ ✗ ✗ 🗸 N/A N/A
Garnet-only gt_only 🗸 🗸 🗸 N/A N/A ✗ ✗ ✗ 🗸 N/A N/A
Ol & Sp ol_liq 🗸 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 🗸 ✗ ✗
Amp & Plag amp_plag 🗸 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 🗸 ✗ ✗
Plag & Kspar plag_kspar 🗸 ✗ ✗ ✗ 🗸 ✗ ✗ N/A 🗸 ✗ Activities of An, Ab, Or

Ol & Liq ol_liq 🗸 ✗ ✗ ✗ 🗸 🗸 🗸*2 N/A 🗸 🗸 KD

Cpx & Liq cpx_liq 🗸 🗸 🗸 🗸 ✗ ✗ ✗ N/A 🗸 🗸 KD, DiHd, EnFs, CaTs
Opx & Liq opx_liq 🗸 🗸 🗸 🗸 ✗ ✗ ✗ N/A 🗸 🗸 KD

Cpx & Opx cpx_opx 🗸 🗸 🗸 🗸 ✗ ✗ ✗ N/A 🗸 ✗ KD

Amp & Liq amp_liq 🗸 🗸 🗸 🗸 ✗ ✗ ✗ N/A 🗸 ✗ KD

Kspar & Liq fspar_liq 🗸 ✗ ✗ ✗ 🗸 ✗ ✗ N/A 🗸 ✗ ✗
Plag & Liq fspar_liq 🗸 🗸 🗸 ✗ 🗸 🗸 🗸 N/A 🗸 ✗ An-Ab exchange

Figure 3: Summary table of functions for each phase. *1: While Amp-only hygrometers exist, in Thermobar, calculations should
be performed using the calculate_amp_only_melt_comps function instead. *2: As the Ol-Liq hygrometer is not T-sensitive,
there is no need to iterate. Thus, users should use the calculate_ol_liq_hygr function and specify equationT as an input.

as well as an estimate of the pressure. For liquid-only ther-
mometers, most equations calculate the temperature of the
liquid, but equations in Thermobar with names ending with
"_sat" calculate the temperature at which a liquid is saturated
in a specific phase (Table A1). For example, Equation 34 of
Putirka [2008] calculates the temperature at which Cpx would
saturate in the liquid (termed the saturation surface).
Several liquid-only thermometers are adapted from olivine-
liquid thermometers, where the DMg term that would tradi-
tionally be calculated from the partitioning of Mg between
measured olivine-liquid pairs is replaced with a theoretical
value of DMg, calculated from the liquid composition using
the model of Beattie [1993]. These equations are indicated with
_BeattDMg in their name, and are particularly useful because
many olivine crystals are not in Fe-Mg equilibrium with their
co-erupted carrier melts (see Section 7.0.2), so it is difficult to
select an olivine and liquid composition in equilibrium.
Liquid-only thermometry calculations are performed using
the function calculate_liq_only_temp. The required inputs

are a dataframe of liquid compositions, as well as specifying a
string for equationT. For example, for a pandas dataframe of
liquids named "myLiquids" as in Figure 2, temperature using
the MgO thermometer of Helz and Thornber [1987] would be
calculated as follows:

Temp_HT87=pt.calculate_liq_only_temp(
liq_comps=myLiquids, equationT="T_Helz1987_MgO")

If Equation 15 of Putirka [2008] is selected, Thermobar returns
an error because this equation is 𝑃-sensitive:

Temp_eq15=pt.calculate_liq_only_temp(
liq_comps=myLiquids, equationT="T_Put2008_eq15")

There are a number of ways to specify pressure. Firstly, a
constant value of pressure can be specified for all liquids (here,
𝑃 = 5 kbar):
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Figure 4: Example plots produced in Thermobar. [A] Olivine-
Liquid Equilibrium diagram for samples erupted in May, July
and Aug during the 2018 eruption of K̄ılauea Volcano from
Wieser et al. [2021]. The equilbrium field spans 𝐾Ol-LiqD values
of 0.27–0.354 (lower bound from Roeder and Emslie [1970],
upper bound from Matzen et al. [2011]. [B] Pyroxene classifi-
cation for more evolved samples from the same eruptive event
as in [A]. The symbols and colors representing different phases
of the eruption defined by their date. [C] Co-existing Plag and
Kspar compositions from the experiments of Elkins and Grove
[1990]. Symbols are colored based on the FeOt content of each
feldspar.

Temp_eq15_5kbar=pt.calculate_liq_only_temp(
liq_comps=myLiquids, equationT="T_Put2008_eq15",
P=5)

Alternatively, if the input spreadsheet contains a column for
𝑃 in kbar (labelled "P_input") with different values for differ-
ent liquids, 𝑃 can be set to equal the values in this column
by referencing the dataframe containing all columns (named
my_input) returned from the import_excel function (see Fig-
ure 2), and the column name in square brackets:

Temp_eq15_Pin=pt.calculate_liq_only_temp(
liq_comps=myLiquids, equationT="T_Put2008_eq15",
P=my_input['P_input'])

Some liquid-only thermometers are also sensitive to melt
H2O content (see Table A1), which is often poorly constrained
in volcanic systems with no rapidly quenched tephra suit-
able for melt inclusion analyses. By default, Thermobar will
read H2O contents from the H2O_Liq column of the input
spreadsheet. If the input spreadsheet has no column for
H2O, this column is filled with zeros. Input water contents
can be overwritten when calling the function by specifying
"H2O_Liq=...", allowing an easy way to investigate the ef-
fect of uncertain H2O contents on temperatures. For example,
here we evaluate temperatures at 6 wt.% H2O:

Temp_eq15_6H=pt.calculate_liq_only_temp(
liq_comps=myLiquids, equationT="T_Put2008_eq15",
P=5, H2O_Liq=6)

As for pressure, H2O can also be set to the value
of any column in the input spreadsheet using
H2O_Liq=my_input['column name']. For example, to
use H2O contents measured by Raman spectroscopy stored
in a column labelled "H2O_Raman":
Temp_eq15_Hin=pt.calculate_liq_only_temp(
liq_comps=myLiquids, equationT="T_Put2008_eq15",
P=5, H2O_Liq=my_input['H2O_Raman'])

6.1.1 Saving to Excel
Once calculations have been performed in Thermobar, there
are a number of ways to save calculations to an Excel work-
book to interact with them outside of Python. To save the
temperatures alongside the liquid compositions, it is easiest to
first make a copy of the original dataframe using the .copy()
function. This means that the original is still preserved in
the script for further calculations and previous results are not
accidentally overwritten:

Liq_T_out=myLiquids.copy()

Then, the pandas series generated by each calculation can
be added onto this dataframe using the pandas .insert()
function. Users need to specify a number for which position
they want this new column in (loc=), the name of the column
(column=), and the variable they wish to save in that column
(value=).
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Liq_T_out.insert(loc=0, column="Temp HT87",
value=Temp_HT87)
Liq_T_out.insert(loc=1, column="Temp eq15 5kbar",
value=Temp_eq15_5kbar)
Liq_T_out.insert(loc=2, column="Temp eq15 Pin",
value=Temp_eq15_Pin)

Here, we saved the calculations from Helz and Thornber
[1987] to the 1st column of the dataframe (Python numbering
starts from zero), and calculations from Putirka [2008] equa-
tion 15 at 5 kbar to the second column, and calculations using
pressure from the 𝑃 input column to the third column respec-
tively. Finally, this new dataframe can be saved to an Excel
spreadsheet (here named "Liquid_only.xlsx"):
Liq_T_out.to_excel('Liquid_only.xlsx')

Further examples of saving various data structures to Excel
can be found at Read The Docs∗.

6.2 Mineral-only thermometers and barometers

Mineral-only thermometers and barometers are implemented
in a very similar way to liquid thermometers. For example,
to calculate amphibole-only pressures using the barometer of
Mutch et al. [2016]:

pt.calculate_amp_only_press(
amp_comps=myAmps, equationP="P_Mutch2016")

Where myAmps is a dataframe of amphibole compositions
from the import_excel function.
Similarly, to calculate Cpx-only pressure using the
temperature-dependent barometer given by Equation 32b of
Putirka [2008]:

pt.calculate_cpx_only_press(cpx_comps=myCpxs,
equationP="P_Put2008_eq32b", T=1400)

Where myCpxs is a dataframe of Cpx compositions from the
import_excel function, and 1400 is the temperature in Kelvin
at which to perform calculations.

6.3 Iterative calculations

Unlike for experimental studies, in natural systems it is likely
that neither temperature or pressure is known. To address
this, Thermobar contains functions to iterate towards a so-
lution using an equation for pressure and an equation for
temperature. The names of these function are adapted from
those discussed above by adding the ending "press_temp" (e.g.
calculate_cpx_only_press_temp).
By default, these functions start with T=1300 K, which
is input into the selected barometer to calculate a pres-
sure. This calculated pressure is then entered into the se-
lected thermometer, and this process is repeated for 30 itera-
tions. These iterative functions also return a column labeled
"Delta_P_kbar_Iter" and "Delta_T_K_Iter", which shows
the difference in calculated pressure and temperature between
the penultimate and the final iteration. If this number is not
∗https://bit.ly/ThermobarRTD

very small (or 0), users can increase the number of iterations
using iterations=N. Equally, the number of iterations can
be reduced for computational efficiency. In numerous tests,
N=30 iterations converged on a solution identical to the Excel
iteration used in the spreadsheets of K. Putirka.
For example, the following code calculates both pressure
and temperature using only cpx compositions, and the ther-
mometer of Putirka [2008] (Equation 32d for temperature and
Equation 32a for pressure):

pt.calculate_cpx_only_press_temp(cpx_comps=myCpxs,
equationP="P_Put2008_eq32a",
equationT="T_Put2008_eq32d")

This returns a pandas dataframe, with
columns for calculated pressure and temperature:

6.4 Mineral-only chemometers
At present, only Amp-only chemometers are implemented in
Thermobar. To calculate co-existing equilibrium liquid com-
positions using Zhang et al. [2017] for SiO2, TiO2, FeO, MgO,
CaO, K2O, Al2O3, and calculated H2O contents and ΔNNO
values from Ridolfi [2021] for a dataframe of amphibole com-
positions called myAmps:

pt.calculate_amp_only_melt_comps(amp_comps=myAmps)

As well as a dataframe of results, this function also returns
a warning telling users that because a temperature wasn’t
entered, the function has only returned the values for T-
independent chemometers, and that a temperature must be
entered to get additional columns for other expressions that
are T-dependent:
"You must enter a value for T in Kelvin to get results from
equation3 and 5 from Zhang, and SiO2 from Putirka (2016)".
These additional equations are evaluated when a tempera-
ture is specified within the function:

pt.calculate_amp_only_melt_comps(
amp_comps=myAmps, T=1300)

In many cases, the temperature may not be known. Thus, the
user could first calculate Amp-only pressure and temperature
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by iterating the barometer of Ridolfi [2021] with the thermome-
ter of Ridolfi and Renzulli [2012]:

PT_Rid=pt.calculate_amp_only_press_temp(
amp_comps=myAmps,
equationP="P_Ridolfi2021",
equationT="T_Ridolfi2012",
Ridolfi_Filter=True)

By default, Amp compositions failing the various filters of Ri-
dolfi [2021] return NaNs for 𝑃 and 𝑇 . The user could specify
Ridolfi_Filter=False such that 𝑃 and 𝑇 are calculated for
all Amps, but in this case we strongly encourage inspection
of the column named "Fail Msg" in the dataframe PT_Rid to
see which ones failed and why (e.g. low totals, Amps not
Mg-hornblendes).
The calculated temperature from the output dataframe

PT_Rid in the column named "T_K_Calc" can be input into
the chemometry function:

pt.calculate_amp_only_melt_comps(
amp_comps=myAmps, T=PT_Rid['T_K_calc'])

7 TWO-PHASE THERMOMETERS AND BAROMETERS
The following thermometers, barometers, and hygrometers
are based on equilibrium between two phases. The applica-
tion of these functions generally requires more thought from
the user. In an ideal scenario, calculations are performed on
phases which have a clear textural relationship, such as mea-
surements of spinels trapped within a specific olivine crystal
[Matthews et al. 2016], or measurements of touching Cpx-Opx
pairs [Walker et al. 2013]. However, in many natural sam-
ples, this is simply not possible. For example, disaggregation
of crystals during transport and eruption mean that it is very
common that erupted lavas and tephra samples have few, or
no touching pairs of crystals. Even if crystals are touching,
there is no guarantee that they are in chemical equilibrium, as
crystals with different histories can be aggregated into clus-
ters by flow within volcanic conduits and/or crystal settling
[Wieser et al. 2019b; Culha et al. 2020].
Thermobarometers which rely on the equilibrium between
a liquid and crystal phase (rather than two crystal phases) are
particularly problematic. Generally, only a narrow range of
liquid compositions will be erupted in any given phase of an
eruption, while the erupted crystal cargo may be chemically
diverse, having grown from a range of melt compositions un-
dergoing chemical differentiation at depth. In many volcanic
centers, the lack of glassy groundmass means it is difficult to
even characterize the composition of this single "carrier liq-
uid" bringing the crystals to the surface, as bulk analysis tech-
niques such as XRF are sensitive to crystal addition. These
pitfalls make it very difficult to identify meaningful mineral-
melt pairs in many volcanic systems.
In Thermobar, we provide a number of functions imple-
menting workflows proposed in the literature for these less-
than-optimal (but common) scenarios. We present func-
tions which consider all possible matches between measured
phases (e.g. assessing all possible liquid and pyroxene pairs, or
all possible pairs of orthopyroxenes and clinopyroxenes), with

user-defined equilibrium filters. Where relevant, the equilib-
rium tests available for each thermobarometer are discussed
below.

7.0.1 Olivine-spinel thermometry
Thermobar includes the olivine-spinel thermometers of Wan
et al. [2008] and Coogan et al. [2014] (Table A2), which are
both pressure-independent. The input spreadsheet should be
prepared such that each row contains an olivine composition
(column headings: "SiO2_Ol", "MgO_Ol") and a spinel composi-
tion ("SiO2_Sp", "MgO_Sp" etc.). After using the import_excel
function, these thermometers are called using the function
calculate_ol_sp_temp:

pt.calculate_ol_sp_temp(
ol_comps=myOls, sp_comps=mySps,
equationT="T_Wan2008")

Where myOls is a dataframe of olivine compositions, mySps
is a dataframe of spinel compositions, and the thermometer is
from Wan et al. [2008].
To our knowledge, the only proposed Ol-Sp equilibrium
test is from Prissel et al. [2016], who propose that 𝐾Sp-OlD,Fe-Mg
can be calculated from a linear regression involving the Cr#
of the spinel. However, as Ol-Sp thermometers only use the
Al2O3 content of the olivine, which is substantially more resis-
tant to diffusive re-equilibration than Fe-Mg, the utility of this
equilibrium test for determining Ol-Sp temperatures is unclear
(so at the moment, we do not include any Ol-Sp equilibrium
tests in Thermobar).
7.0.2 Olivine-liquid thermometry
As with olivine-spinel thermometry, the default way to calcu-
late olivine-liquid temperatures in Thermobar is to prepare an
Excel spreadsheet with each row containing an olivine compo-
sition paired with a specific liquid composition. For all olivine-
liquid thermometers except that of Pu et al. [2017], a pressure
needs to be specified (as in Section 7.0.2). For example, tem-
peratures can be calculated using Equation 21 of Putirka [2008]
at 5 kbar:

pt.calculate_ol_liq_temp(
liq_comps=myLiquids, ol_comps=myOls,
equationT="T_Put2008_eq21", P=5)

This function returns a pandas dataframe with the tempera-
ture in Kelvin as well as the measured 𝐾Ol-LiqD .
Unlike olivine-spinel thermometry, olivine-liquid thermom-
etry is highly susceptible to issues involving disequilibrium.
This is because olivine crystals are commonly "antecrystic",
being brought to the surface in chemically unrelated melts
[Balta et al. 2013; Wieser et al. 2019a]. Thus, it is vital to calcu-
late the degree of equilibrium for olivine-liquid pairs to assess
the accuracy of thermometric estimates. The most common
way to assess olivine-melt equilibrium examines the partition
coefficient of Fe-Mg between these two phases (𝐾Ol-LiqD , re-
turned by default for Ol-Liq functions). The value of 𝐾Ol-LiqD
is sensitive to the amount of Fe3+ in the melt. By default, all
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Thermobar functions use the value of Fe3Fet_Liq in the in-
putted spreadsheet, and 𝐾Ol-LiqD is calculated using only Fe2+

in the liquid phase (and all FeO in the olivine as Fe2+). The
proportion of Fe3+ used in the calculation can be overwrit-
ten by specifying a different value for Fe3Fet_Liq. Here we
perform calculations using 20 % Fe3+:

pt.calculate_ol_liq_temp(
liq_comps=myLiquids, ol_comps=myOls,
equationT="T_Put2008_eq21", P=5,
Fe3Fet_Liq=0.2)

If eq_tests=True is specified in the function, equilibrium
𝐾
Ol-Liq
D values are calculated from the liquid composition us-
ing the models of Roeder and Emslie [1970], Toplis [2005], and
Matzen et al. [2011]:

pt.calculate_ol_liq_temp(
liq_comps=myLiquids, ol_comps=myOls,
equationT="T_Put2008_eq21", P=5,
eq_tests=True)

As well as the calculated temperature, the measured
𝐾
Ol-Liq
D , the calculated 𝐾

Ol-Liq
D for each model, and the

input liquid composition, the function returns the dif-
ference between measured and predicted 𝐾

Ol-Liq
D values

(Δ𝐾D) for these three models (all as a pandas dataframe):

In many cases, none of the pre-matched olivines and liquids
will be in equilibrium. To help users determine the compo-
sition of olivines that would be in equilibrium with their liq-
uids, the function calculate_eq_ol_content calculates the
equilibrium olivine forsterite content for a given set of liquid
compositions. As for the equilibrium test above, three mod-
els for predicting 𝐾Ol-LiqD equilibrium are included. Specify-
ing Kd_model="Roeder1970" uses 𝐾Ol-LiqD = 0.3±0.03 follow-
ing Roeder and Emslie [1970], Kd_model="Matzen2011" uses
𝐾
Ol-Liq
D = 0.34±0.012 following Matzen et al. [2011].
For example, to calculate the equilibrium olivine content
using the model of Roeder and Emslie [1970]:

pt.calculate_eq_ol_content(liq_comps=myLiquids,
Kd_model="Roeder_1970")

The pandas dataframe returned by the function has column
headings corresponding to the equilibrium forsterite content
for 𝐾Ol-LiqD = 0.3 (preferred value), 0.33 (+1σ), and 0.27 (−1σ):

Columns are also returned showing liquid Mg# calculated us-
ing Fe2+ only (used to calculate the Eq Fo contents), and also
using FeT.
Unlike the fixed 𝐾Ol-LiqD values of Roeder and Emslie [1970]
and [Matzen et al. 2011], the model of Toplis [2005] calculates
𝐾
Ol-Liq
D as a function of liquid composition, pressure, tem-
perature, and olivine forsterite content. Thermobar provides
several ways to use this model. First, using paired olivine and
liquid compositions:

pt.calculate_eq_ol_content(
liq_comps=myLiquids, ol_comps=myOls,
Kd_model="Toplis2005", P=2, T=1373.1)

Alternatively, just the olivine forsterite content can be input
as a single value or a pandas series (instead of the full olivine
compositions), along with pressure, temperature, and liquid
compositions:

pt.calculate_eq_ol_content(
liq_comps=myLiquids, ol_fo=0.82,
Kd_model="Toplis2005", P=2, T=1373.1)

In both cases, the function returns a pandas dataframe where
the first column is the equilibrium 𝐾

Ol-Liq
D calculated using

Toplis [2005], and the second column is the equilibrium olivine
forsterite content. However, needing to specify an olivine
forsterite content to calculate an equilibrium forsterite con-
tent is somewhat circular logic. If olivine compositions or a
forsterite content are not entered into the function, Thermobar
will iterate by first calculating a 𝐾Ol-LiqD for Fo = 0.95, then use
this 𝐾Ol-LiqD to calculate an equilibrium Fo content, and then
inputting that Fo content into a new calculation for 𝐾Ol-LiqD
(over 20 iterations):

pt.calculate_eq_ol_content(
liq_comps=myLiquids, Kd_model="Toplis2005",
P=2, T=1373.1)

If Kd_model="All", calculations are performed using all three
models (including using the iterative approach for Toplis
[2005]):

pt.calculate_eq_ol_content(
liq_comps=myLiquids, ol_comps=myOls,
Kd_model="All", P=2, T=1373.1)

7.0.3 Olivine-Liquid melt matching
The function calculate_ol_liq_temp_matching considers
all possible matches between the input dataframe of Olivine
and Liquid compositions (e.g. N = 10 Ol and N = 20 Liq would
yield 200 rows). The function returns all possible matches
with calculated temperatures. If users specify eq_tests=True,
rows can be filtered based on the various 𝐾D filters described
above.

7.1 Clinopyroxene-liquid thermobarometry
Thermobar contains a number of different thermobarometers
applicable to Cpx-Liq pairs (Table A4). In the simplest sce-
nario where relevant Cpx-Liq pairs have been identified (e.g.
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experimental products, groundmass-rim pairs), data should
be prepared as an Excel spreadsheet where each row con-
tains a matched pair of Liq and Cpx compositions. The
function calculate_cpx_liq_press allows users to calcu-
late pressures for a variety of barometers, while the function
calculate_cpx_liq_temp calculates temperatures. For ther-
mometers which are 𝑃-sensitive, a pressure in kbar must be
specified, and a temperature in K must be specified for 𝑇 -
sensitive barometers (as for the single-phase thermobarome-
ters discussed above). For example, to calculate the tempera-
ture using Equation 33 of Putirka [2008] at 5 kbar:

pt.calculate_cpx_liq_temp(
liq_comps=myLiquids, cpx_comps=myCpxs,
equationT="T_Put2008_eq33", P=5)

When neither pressure nor temperature is known, the func-
tion calculate_cpx_liq_press_temp iterates towards a solu-
tion using a user-supplied pressure and temperature by speci-
fying an equation for both pressure and temperature (see Sec-
tion 6.3). For example, here we iterate Equation 33 for 𝑇 and
equation 30 for 𝑃 from Putirka [2008]:

pt.calculate_cpx_liq_press(
liq_comps=myLiquids, cpx_comps=myCpxs,
equationT="T_Put2008_eq33",
equationT="T_Put2008_eq30").

To return the values of different equilibrium tests (e.g. DiHd,
EnFs, [Neave et al. 2019]), users can specify an additional ar-
gument eq_tests=True in all Cpx-Liq functions.
7.1.1 Machine Learning models
Thermobar also contains implementations of the machine
learning (ML) Cpx-only and Cpx-Liq thermometers and
barometers of Petrelli et al. [2020] and Jorgenson et al. [2022],
which use the extra trees algorithm [Geurts et al. 2006].
Thermobar is distributed using the free service PyPI, so that
users can install it using the simple pip install command.
However, PyPI has a size limit of 100 MB per "release" of the
project. Given that pickle (.pkl) or onnx (.onnx) files used to
save pre-trained ML models tend to be 10s of MB each, it is
not possible to distribute all these presaved models as well as
the other Thermobar source code in a single package.
Thus, in addition to pip installing Thermobar once on their
machine, users who wish to use machine learning models will
need to run an additional line in their notebook specifying that
they wish to download these saved models from the Github
repository Thermobar_onnx:
!pip install "https://github.com/PennyWieser/Thermobar_onnx/

archive/refs/tags/0.02.zip"↩→

Once these files have been downloaded, they can be accessed
the same way as more conventional empirical thermobarom-
eters:

pt.calculate_cpx_liq_press(
liq_comps=myLiquids, cpx_comps=myCpxs,
equationP="P_Petrelli2020_Cpx_Liq").

Following Jorgenson et al. [2022], Thermobar also
returns the median, standard deviation, and in-
terquartile range calculated from all the trees used
(as well as calculated pressures or temperatures):

This allows users to filter out rows which give very large
interquartile ranges or standard deviations.
An ongoing problem with ML-based thermobarometers
is that even using the same code, different versions of
scikit-learn will return different pressures and tempera-
tures (with differences up to ∼0.5 kbar). Additionally, ML
models saved as pickles in one version of scikit-learn will
yield a warning message when opened in a different version:

These warnings are not concerning in themselves because the
answer obtained from one version is not more correct than
that from any other version, and differences are well within
the stated SEE of the model. However, different results based
on the specifics of the local Python installation does represent
a problem in terms of ensuring results are reproducible.
One solution is to use ONNX [Open Neural Network
Exchange; ONNX-Runtime-developers 2021] to save ML
pipelines, which ensures stable results. However, as of yet,
there is no way to build the voting of Jorgenson et al. [2022]
into these pipelines. Thus, in Thermobar, we include two ver-
sions of ML models:

1. equationP="P_Petrelli2020_Cpx_only"will calculate
pressures using voting for Petrelli et al. [2020] from a model
saved as a pickle, but the exact pressure will change with
future versions.

2. equationP="P_Petrelli2020_Cpx_only_onnx" will
use ONNX to give a stable answer, but cannot currently do
voting.

The same suffix format applies to the models from Jorgenson
et al. [2022] to access these two options.
With time, we anticipate the pickles will eventually stop
loading into newer versions of scikit-learn. We will re-
release new .pkl files (and .onnx files if required) when this
happens, so users should check for the latest version number
from https://bit.ly/ThermobarMLTags, and upgrade their
installation:

!pip install --upgrade "Paste Latest URL Here"

We will also update this repository to add new ML models as
they emerge.
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7.1.2 Cpx-Liq Melt Matching
A number of methods have been developed to perform Cpx-
Liq thermometry by comparing all erupted Cpx and Liq com-
positions from a given volcanic center/region, and identify-
ing liquid-cpx pairs which meet certain equilibrium criteria
[e.g. Winpenny and Maclennan 2011; Neave and Putirka 2017;
Scruggs and Putirka 2018; Neave et al. 2019]. In Thermobar,
the function calculate_cpx_liq_press_temp_matching as-
sesses all possible clinopyroxene-liquid pairs for a user-
supplied dataframe of liquid compositions of length M (e.g.
all XRF analyses from a given volcanic center), and a user-
supplied dataframe of measured Cpx compositions of length
N. The function performs the following steps:

1. Liq components and Cpx components (e.g. cation frac-
tions) are calculated for each individual sample (saving com-
putational time vs. calculating them after the duplication steps
below).

2. Each Cpx composition (oxides+components) is dupli-
cated M times forming a pandas dataframe with rows for
Cpx1-Cpx1-Cpx1, ... , CpxN-CpxN-CpxN. The dataframe
of liquid compositions (oxides+components) is duplicated
N times forming a dataframe with rows for Liq1-Liq2-
Liq3...LiqM, Liq-Liq2-Liq3 ... LiqM, These dataframes are
combined, creating a dataframe of length N×M with all pos-
sible Cpx-Liq pairings of the format Cpx1-Liq1, Cpx1-Liq2,
Cpx1-Liq3, Cpx2-Liq1 ... CpxN-LiqM.

3. Compositional components which require both a Liq
and Cpx composition are calculated for this combined
dataframe (e.g. the DiHd component, 𝐾Cpx-LiqD ).

Step 3 is complex. As Cpx-Liq equilibrium tests are sen-
sitive to pressure and/or temperature, equilibrium tests can-
not be performed until pressures and temperatures for each
pair have been calculated. However, calculating pressures and
temperatures iteratively for all possible Cpx-Liq matches can
be very time consuming (e.g. 400 Cpx and 2500 possible liq-
uids requires 1 million iterative calculations to be performed).
To increase computational efficiency, we apply a prelimi-
nary filter in terms of 𝐾Cpx-LiqD equilibrium (using Equation
35 of Putirka [2008] by default). As 𝐾Cpx-LiqD parameteriza-
tions are sensitive to temperature but not pressure, we use the
calculate_cpx_liq_temp function to calculate a minimum
temperature for each Cpx (for a default value of P = −10 kbar,
adjustable using PMin=...), and a maximum temperature (for
a default value of P = 30 kbar, adjustable using PMax=...).
This upper pressure limit was set with volcanic systems in
mind, but can be easily overridden when calling the func-
tion. These maximum and minimum equilibrium 𝐾

Cpx-Liq
D

values are compared to the measured 𝐾D,Fe-Mg values for
each Cpx-Liq pair. If the deviation between measured and
calculated 𝐾D,Fe-Mg is greater than the specified value (0.03
by default, changed by specifying Kd_Err=" ") for both the
minimum and maximum equilibrium 𝐾

Cpx-Liq
D , no temper-

atures in-between will yield a match. Thus, these Cpx-Liq
matches can be discarded.

4. The function calculate_cpx_liq_press_temp is used
to iteratively calculate pressures and temperatures for remain-
ing Cpx-Liq pairs.

5. Using the calculated temperature and pressure for each
pair, the equilibrium 𝐾

Cpx-Liq
D is calculated using Equation

35 of Putirka [2008], the equilibrium CaTs component using
the expression of Putirka [1999], and the updated equilibrium
EnFs and DiHd components calculated using the expression of
Mollo et al. [2013], following Neave et al. [2019]. Other models
for these equilibrium tests can also be specified in the func-
tion. It is worth noting that the supplementary spreadsheet
of Neave et al. [2019] uses the Putirka et al. [1996] anhydrous
thermometer to calculate the 𝐾Cpx-LiqD component, while tem-
perature is calculated using Putirka [2008] (Equation 33). In
our code, 𝐾Cpx-LiqD is calculated using the user-specified ther-
mometer for consistency.

6. By default, Thermobar then selects Cpx-Liq pairs where
the measured components calculated using the method of
Putirka et al. [1996] and calculated equilibrium components
are within ±0.03 for 𝐾Cpx-LiqD , ±0.06 for DiHd, ±0.05 for EnFs,
and ±0.03 for CaTs (following the supporting Excel spread-
sheet of Neave et al. [2019]). Users can change these selection
criteria using DiHd_Err=..., Kd_Err=... etc.

7. The function returns a dictionary. Users can
extract a pandas dataframe of all Cpx-Liq matches
which meet the specified equilibrium criteria using
dictionary_name['All_PTs']. Following the approach
of Neave and Putirka [2017], Thermobar also performs
calculations to average the pressures and temperatures for
each Cpx. For example, if Cpx1 matches with Liq1, Liq3,
and Liq9, the values for these three matches will be averaged,
and the standard deviation of the pressure and temperature
are returned. This information is stored in the second part of
the dictionary accessed using dictionary_name['Av_PTs'].

The speed at which these calculations are performed are
significantly faster than previous tools (seconds vs. tens of
minutes for assessing matches between hundreds of possible
Cpx and Liqs). This, along with the flexibility provided by
the implementation of these tools in Python, offers users more
freedom to assess possible Cpx-Liq matches in larger datasets.
There is also far more choice of equilibrium filters. For exam-
ple, users can specify Kd_Match="Masotta", which calculates
𝐾
Cpx-Liq
D using Equation 35Alk of Masotta et al. [2013]. This
equation expresses 𝐾Cpx-LiqD as a function of temperature, and
the cation fractions of Na2O and K2O in the melt, and was
developed for trachyte and phonolitic magmas (extreme care
should be taken when applying it to other melt compositions).
As with the other functions discussed so far, users can also
specify H2O_Liq and Fe3Fet_Liq ratio in the function itself.
This can be a fixed value for all calculations, or could be set
as a pandas series with the same length as the input dataframe
of liquid compositions.
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7.1.3 Recreating Scruggs and Putirka (2018)
To demonstrate the versatility of this Cpx-Liq melt match-
ing function, we recreate the analysis of Scruggs and Putirka
[2018], who assess Cpx-Liq equilibrium on samples from
Chaos Craggs at Lassen Peak. The erupted liquids sampled at
Chaos Craggs are strongly bimodal. To capture the composi-
tions of liquids which likely exist at depth between these two
erupted end-members, [Scruggs and Putirka 2018] add or sub-
tract the composition of a felsic-whole rock composition from
measured mafic liquids, and use the solver functions in Excel
to find the mixing proportion that best satisfies equilibrium
tests.
We demonstrate how a more automated approach can be
implemented in Thermobar in Figure 6. A worked example
for this is available on the Read The Docs page∗. Step 1 im-
ports an Excel spreadsheet containing possible liquid com-
positions (whole-rock data in this example), and a separate
sheet or spreadsheet containing measured Cpx compositions
(Figure 5). Step 2 defines the silicic and mafic end-member
liquid compositions. For the silicic liquid, we apply a filter to
only consider measured liquids with >65 wt.% SiO2. For the
mafic end-member, we filter based on measured samples with
<53.8 wt.% SiO2 and >4 wt.% MgO. We then use the function
add_noise_sample_1phase to generate five synthetic liquids
for each measured liquid of these two end-members. Each
oxide for these synthetic liquids was chosen from a normal
distribution with the mean set at the measured liquid compo-
sition, and 1σ = 1 % (percent of measured value, not absolute
wt.%). These synthetic liquids help account for the fact there
are a number of liquids that exist at depth which were not
represented during sampling. The following steps could also
be performed using the dataframe of measured liquid compo-
sitions without applying filters or adding noise.
Step 3 mixes these end-members to generate synthetic liq-
uids spanning the entire compositional range between mea-
sured liquids. The function calculate_bootstrap_mixes
mixes these two end-members in various proportions with
a number of different options (demonstrated in the example
notebook). In its simplest form, the function takes two end-
members, and mixes a randomly selected composition from
one end-member with a randomly selected composition from
the other end-member, with the mixing proportion varying
randomly between 0 and 1. Additional flexibility is provided
by the optional input self_mixing. If self_mixing=True,
the two end-members are combined into a single dataframe,
and these compositions are randomly mixed. This means
that Thermobar mixes between: 1) mafic end-members with
silicic end-members (as in the default form), 2) mafic end-
members with other mafic end-members, and 3) silicic end-
members with other silicic end-member compositions. Self-
mixing produces a stronger clustering of synthetic liquids near
the end-members, which may be useful in certain circum-
stances. However, in this specific example, relatively few liq-
uids generated by this function lie within the compositional
gap between mafic and silicic compositions for <1000 du-
plicates. Thus, we use the option self_mixing="Partial",
∗https://bit.ly/ThermobarRTD

which creates half the mixes by mixing between silicic and
mafic end-members, and the other half from self-mixing.
Step 4 is optional (Figure 6), and combines this synthetic
dataframe of liquids with the original dataframe of liquids us-
ing the pandas concat function (to include samples which
were not selected as end-members).
Because Cpx thermometry is sensitive to the H2O content
of the liquid, but H2O contents at depth cannot be deduced
from bulk rock analyses of degassed lava samples, Scruggs and
Putirka [2018] calculate the H2O of the liquid as a function
of the SiO2 content. Step 5 overwrites the H2O in the Liq
dataframe (0 as whole-rock data) using their expression.
Step 6 inputs this finalized dataframe of synthetic and mea-
sured liquids, and measured Cpx compositions into the func-
tion calculate_cpx_liq_press_temp_matching (Figure 6.
Step 6 uses matplotlib to plot averaged pressures and tem-
peratures from each Cpx as red diamonds with 1σ error bars
(plt.errorbar), and all possible matches as semi-transparent
symbols.

7.2 Orthopyroxene-liquid thermobarometry

The orthopyroxene-liquid functions in Thermobar are very
similar to those for Cpx-Liq. If users wish to calculate pres-
sure or temperature for Opx-Liq pairs (e.g. measured rim
and matrix glass compositions), they can use the functions
calculate_opx_liq_press and calculate_opx_liq_temp.
Similarly, 𝑃 and 𝑇 can be solved iteratively using
calculate_opx_liq_press_temp, specifying an equationP
and equationT.
To assesses all possible Liq and Opx pairs, and calculate 𝑃
and 𝑇 for pairs within user-specified ranges for equilibrium,
the function calculate_opx_liq_press_temp_matching
should be used. Unfortunately, there is only one commonly
used equilibrium test for Opx-Liq pairs, which compares
measured values of 𝐾Opx-LiqD to those predicted from the
Liq. Putirka [2008] suggests that the range of 𝐾Opx-LiqD
values in experiments ranges from 0.29±0.06, and can be
expressed as a function of the cation fraction of Si in the liquid
(𝐾Opx-LiqD = 0.4805−0.3773 𝑋 liqSi ). Because this equilibrium
test is independent of 𝑃 and 𝑇 , Opx-Liq pairs can be filtered
without any iteration (simplifying the function relative to
that for Cpx-Liq). The Opx-Liq melt matching algorithm
follows steps 1–3 described in Section 7.1. Then, 𝐾Opx-LiqD
values are computed for each Opx-Liq pair and compared
to equilibrium values. By default, the function calculates
equilibrium values using the 𝑋 liqSi expression of Putirka [2008],
and considers all matches within Δ𝐾Opx-LiqD of ±0.06. Users
can override this default option by specifying a value for
Kd_Match, and Kd_Err in the function. To evaluate Opx-Liq
pairs with measured 𝐾Opx-LiqD = 0.29±0.07:

pt.calculate_opx_liq_press_temp_matching(
liq_comps=myLiquids, opx_comps=myOpxs,
equationT="T_Put2008_eq28a",
equationP="P_Put2008_eq29b",
Kd_Match=0.29, Kd_Err=0.07)
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Extracts df of liquid compositions

Extracts df of cpx compositions

Compositional filter

Add normally distributed noise (1σ=1% relative)

Creates 5 duplicates per sample

Appends Liqs passing compositional
filter to new noisy samples

Generates 500 synthetic liquids

50% mafic-silicic mixes
50% mixes between all comps

Step 1 – Import all measured Liqs and Cpxs

Step 2 – Identify silicic and mafic end members, then add noise

Step 3 – Generate synthetic liquids by mixing end-members

Compositional filter

Figure 5: Example of functions allowing users to generate synthetic liquids, adapted from the approach of Scruggs and Putirka
[2018]. Step 1: The user reads in all measured Liq compositions into one pandas dataframe (MyLiquids1), and all Cpx into a
second dataframe (myCpxs1). Step 2: Using as many compositional filters as required, the user defines 2 end-members. Step
3: These end-members are then mixed to generate 500 synthetic liquids which incorporate the variation in the natural data.
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Step 5 – Set water content (following Scruggs and Putirka, 2018)

Gets rid of indexing issues, 
replaces NaN with zeros

Considers matches with KD=0.27±0.03
Returns a dataframe with averages for all Liq matching each Cpx (e.g., P, T, Eq Tests etc.)
Returns a dataframe of all Cpx-Liq matches

Plots light red circles 
for all  matches

Plots error bar for 
the average PT for 
each Cpx

Step 4 – Combine synthetic liquids and measured liquids
Combines 2 dataframes

Step 6 – Perform melt matching to calculate pressures and temperatures

Overwrites water contents with a value dependent on SiO2

Select equations to use

Inspect first 5 rows of averaged dataframe

Step 7 – Visualizing matches

Saves figure to png
Adds legend

Makes pressure increase downwards

Figure 6: Step 4: Once synthetic liquids have been calculated, users may wish to combine them with measured liquid composi-
tions to get the largest number of available comparisons. Step 5: Columns in this combined dataframe can be easily overwritten.
Here, the liquid H2O content is calculated from the SiO2 content of the liquid (following [Scruggs and Putirka 2018]). Step 6:
Once the liquid input is set, the function calculate_cpx_liq_press_temp_matching is called, specifying the choice of liquid
and Cpx compositions, as well as the equation for pressure and temperature. The function returns a dictionary, which can be
subdivided into a pandas dataframe containing all matches, and a dataframe where pressures and temperatures have been av-
eraged for all the liquids in equilibrium with a given Cpx composition. Step 7: Plotting both outputs gives insight into the amount
of scatter associated with each Cpx-Liq pair compared to averaged outputs.

Following this filtering step, the function takes pairs in equilib-
rium and uses the calculate_opx_liq_press_temp function
to calculate pressure and temperature for each pair. A dic-
tionary is returned, containing the pressure and temperature
for each pair. A second output is also calculated, where all
matches for a given orthopyroxene are averaged (e.g. Opx1-
Liq1, Opx1-Liq10, Opx1-Liq32). Users also have the option to
overwrite the Fe3Fet_Liq value specified in the input, as this
function uses only Fe2+ in the melt to calculate 𝐾Opx-LiqD .

7.3 Two pyroxene thermobaromtry

The function calculate_cpx_opx_temp allows users
to calculate temperatures for matched Cpx-Opx pairs,
calculate_cpx_opx_press calculates pressures, and
calculate_cpx_opx_press_temp iterates towards a pres-
sure and temperature. Unlike for Opx-Liq and Cpx-Liq,
the function for assessing all possible Cpx-Opx pairs,
calculate_cpx_opx_press_temp_matching, returns all
pairs by default. This is because the partitioning of Fe-Mg be-
tween Cpx-Opx is the only available equilibrium test, and this
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parameter shows a lot of variation between different volcanic
systems. We do not intend for users to consider all pairs, but
instead we strongly encourage them to think carefully about a
suitable equilibrium cut-off for their system of interest. At the
moment, a numerical value can be specified for Kd_Match and
Kd_Err. Alternatively, specifying Kd_Match="HighTemp" will
calculate pressures and temperatures for all Cpx-Opx pairs
with 𝐾Cpx-OpxD = 1.09 ± 0.14 (suggested by Putirka [2008] for
high temperature systems). Similarly, Kd_Match="LowTemp"
uses pairs within 0.7 ± 0.2 (for subsolidus systems [Putirka
2008]). As for Cpx- and Opx-Liq, the function returns a
dictionary containing pressures and temperatures for all
matches, as well as pressures and temperatures averaged for
each Cpx, and for each Opx.

7.4 Plagioclase-liquid and alkali feldspar-liquid thermo-
barometry

For Plag-Liq and Kspar-Liq thermobarometry, Thermobar
has generic functions because the mineral compo-
nent calculations of Putirka [2008] are the same for all
feldspar end-members (calculate_fspar_liq_temp,
calculate_fspar_liq_press,
calculate_fspar_liq_press_temp). When these func-
tions are used for Plag compositions, the dataframe of oxides
should be entered as plag_comps=" ", and for Kspars, as
kspar_comps=" ".
Equilibrium tests are currently only implemented for Plag,
comparing the calculated and predicted An, Ab, and Or com-
ponents between Plag and Liq. In particular, Putirka [2008]
suggest that the Ab-An exchange coefficient is a good equilib-
rium test, as it varies little as a function of pressure, temper-
ature or melt H2O content (∼0.27±0.18). In their supporting
spreadsheet updated since 2008, they use values of 0.28±0.11
for T>1050°C, and 0.1±0.05 for T<1050°C. In the example
Jupyter notebook on the Read The Docs page∗, we demon-
strate how to filter pairs using this equilibrium criteria.

calculate_fspar_liq_temp_matching allows all possible
matches between Fspar and Liq compositions to be evalu-
ated. As well as returning a dataframe of all matches, a second
dataframe containing averages for each Fspar is returned (as
for Cpx-Liq). For plagioclase inputs, if Ab_An_P2008=True,
pairs will be filtered using the Ab-An equilibrium test of
Putirka [2008].

7.5 Plagioclase hygrometers

The function calculate_fspar_liq_hygr allows the H2O
contents of liquids which crystallized Plag to be estimated.
These hygrometers require users to specify the composition
of the liquid, as well as the anorthite and albite content of
each Plag. Analogous to the other two-phase functions, the
composition of Liq and Plag dataframes are specified in the
function, along with the pressure and temperature, and choice
of equation (here, using the hygrometer of Waters and Lange
[2015]):

∗https://bit.ly/ThermobarRTD

pt.calculate_fspar_liq_hygr(
liq_comps=myLiquids, plag_comps=myPlags,
equationH="H_Waters2015", T=1300, P=5)

This returns a pandas dataframe of the calculated H2O
content, along with an indicator of whether the pair
passed the recommended equilibrium test of Putirka
[2008] based on the temperature input by the user.

Alternatively, users can just enter the anorthite and albite con-
tent of the Plag:

pt.calculate_fpsar_liq_hygr(
liq_comps=myLiquids, XAn=0.5, XAb=0.4,
equationH="H_Waters2015", T=1300, P=5)

As with other optional inputs, XAn and XAb can be a single
value, or a pandas series with a different value for each row
of the calculation.
Plag-Liq hygrometers are very sensitive to temperature. In
the Read The Docs example†, we show that an increase in
temperature from 1100 to 1200 K corresponds to a drop in
calculated H2O contents from 5.85 to 3.64 wt.% H2O. In many
cases, temperatures to use with Plag hygrometers are esti-
mated from other mineral pairs (e.g. Fe-Ti oxides [Waters and
Lange 2015]). However, there is no guarantee that different
mineral phases are recording the same part of the magmatic
history, and in many systems, no independent constraint on
temperature exists. Given that Plag-Liq equilibria are sensi-
tive to temperature and H2O content, we incorporate a func-
tion into Thermobarwhich iterates temperature and calculated
H2O content by specifying a thermometer and hygrometer:

Dict_HT=pt.calculate_fspar_liq_temp_hygr(
liq_comps=myLiquids, plag_comps=myPlags,
equationT="T_Put2008_eq23",
equationH="H_Waters2015",
P=5, iterations=30)

This function returns a dictionary, comprising two
dataframes:

Calc_HT=Dict_HT['T_H_calc']
Evol_HT=Dict_HT['T_H_Evolution']

The first dataframe, indicated by the key 'T_H_calc', con-
tains calculated temperatures and H2O contents, as well as
an indication of the change in 𝑇 and H2O content between
the final iterative step and the penultimate iterative step. If
these Delta values are small, it indicates sufficient iterations
were used. If these numbers are larger (e.g. >0.01), it indi-
cates that the iteration has not converged. At this point, it
†https://bit.ly/ThermobarRTD
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is worth inspecting the second output, indicated by the key
'T_H_Evolution', which shows the evolution of 𝑇 and H2O
for each sample against the number of iterations.

calculate_fspar_liq_temp_hygr_matching first consid-
ers all possible matches between Plag and Liq comps, and
then performing the matching routines described above. All
matches, and the average per Plag, are returned as a dictio-
nary. This function is not currently supported for Kspar-Liq,
as no Kspar-Liq hygrometers currently exist.

7.6 Two feldspar thermobarometry
Temperatures from co-existing Kspar-Plag pairs can be calcu-
lated using the function calculate_plag_kspar_temp. The
function calculate_plag_kspar_temp_matching considers
all possible pairs between a dataframe of Plag compositions,
and a dataframe of Kspar compositions. Putirka [2008] sug-
gests that a comparison of activities for An, Ab, and Or in
Plag and Kspar using the models of Elkins and Grove [1990]
can be used as an equilibrium test. However, Putirka [2008]
notes that while the values should nominally be zero, further
examination of experimental data is required to determine rea-
sonable cut-offs. Thermobar returns the difference between
these theoretical values and measured values for each pair if
eq_tests=True (these values are returned automatically for
the matching function). We provide a detailed example show-
ing users how they could filter pairs using different values for
these equilibrium tests on the Read The Docs page∗.

8 CONVERTING PRESSURES TO DEPTHS
It can be very useful to convert pressures from thermobarome-
try into depths below the surface (e.g. to compare to geophys-
ical signals of unrest). This conversion can be done assuming
a constant crustal density and the following equations:

𝑃 = ρ × 𝑔 × 𝐻 (1)

Where 𝑃 is pressure in Pa, ρ is the density of the crust in
kgm−3, and 𝐻 is the height of the crustal column in m (i.e.
depth). This equation can be re-arranged to calculate height
(depth):

𝐻 =
𝑃

ρ × 𝑔 (2)

After calculating pressure using any of the tools in Thermo-
bar, users can easily convert to depth (in km) using a constant
crustal density.

pt.convert_pressure_to_depth(
P_kbar=Calc_P['P_kbar_calc'],
crust_dens_kgm3=2700)

For example, Calc_P may be the dataframe returned from a
Cpx-only pressure-temperature iteration.
Alternatively, a number of parametrizations between pres-
sure and depth that account for varying crustal density are
available [e.g. Putirka 2017; Lerner et al. 2021; Rasmussen et
al. 2022]. These density models can be selected by specifying
model=" ". For example, to perform calculations using the
∗https://bit.ly/ThermobarRTD

average global arc density model derived from seismic data
from Rasmussen et al. [2022]:

pt.convert_pressure_to_depth(
P_kbar=Calc_P['P_kbar_calc'],
model='rasmussen')

Regardless of whether a density value or model is used, this
function always return a panda series of depths in km. This
function can be used in a variety of different circumstances
to convert depths to pressures, including applications outside
of Thermobar (e.g. melt inclusion saturation pressures). Any
panda series, NumPy array or float/integer can be fed into this
function using the argument P_kbar=....
We also provide the option for a different value of the
gravitational constant to be specified in the function, so that
constant-density calculations and these terrestrial profiles can
be applied to other planets (although differences in crustal
lithology should be evaluated).

9 MONTE CARLO ERROR PROPAGATION
Estimating uncertainty when performing thermobarometry
and hygrometry calculations is important, particularly given
that many calibrations are highly sensitive to the concentra-
tion of minor components which are difficult to measure with
high precision (e.g. Na2O in Cpx). Additionally, sometimes
parameters like melt H2O contents are poorly constrained,
particularly for volcanic systems where melt inclusion anal-
yses are sparse or absent.
The function add_noise_sample_1phase can be used to
make synthetic distributions of mineral or liquid compositions
distributed about each measured value, with options for the
types (e.g. percentage or absolute) and distribution (e.g. nor-
mal or uniform) of errors. Simply, if this function is given a
dataframe of five mineral or liquid compositions, it generates
N duplicates of each of these rows, with a specified amount of
noise added. There are a number of ways to use this function,
with several worked examples on the Read the Docs page†.
In the example shown in Figure 7, we import absolute 1σ
errors from repeated analyses of Cpx and Liq in each ex-
periment of Feig et al. [2010] (Step 1–3). We then generate
1000 synthetic Liq and Cpx compositions for each experi-
ment (e.g. e142, e146, e148, e153, Step 4). For each ac-
tual EPMA measurement and each oxide, a value is drawn
from a normal distribution with a mean of zero, and 1σ
equal to the inputted value. These values are then added
to the measured value (resulting compositions shown in Step
5) . These synthetic compositions can be input into any
of the Thermobar functions (Step 6). In this example, we
use calculate_cpx_liq_press_temp to iterate temperatures
from Equation 31 of Putirka [2008] with the Neave and Putirka
[2017] barometer to calculate the spread of 𝑃 and 𝑇 from each
experiment.
The av_noise_sample_series can be used to calculate
statistics for any given calculated variable, grouping simula-
tions by the original sample name of the Liq or Cpx used to
make the synthetic values (Step 7). For each Cpx-Liq pair, the
†https://bit.ly/ThermobarRTD
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Step 1 – Compile measured values and errors into spreadsheet

Extracts a df of all inputs

Extracts dfs of  errors for each phase from 
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Step 2 – Load measured values

Step 3 – Load Errors

Step 4 – Make synthetic compositions distributed around  each measured composition 
df of measured liquid compositions df of errors on liquid compositions

Specifies df contains absolute errors in wt% Makes 1000 synthetic analysis per measured Liq

By default, neg 
values set to 0.

Step 5 – Inspect synthetic compositions

Step 6 – Input synthetic compositions into whatever function is of interest

Step 7 – Calculate statistics for each Cpx-Liq pair Column you want to average 
across N duplicates

Column with 
sample ID (used to 
group duplicates

Outputted statistics for N 
duplicates for the variable of 
interested (P_kbar_calc here)

…
Step 8 – Plot results!

Distribution for 1000 synthetic 
Cpx matched to 1000 

synthetic liquids from a single 
measured Cpx-Liq pair

Measured value 
for liquid e142 

(50.97 wt%)
Measured 
value + 1σ
for liquid 

e142
(50.97+0.33 

wt%)

Measured value 
for liquid e142 

(4.51 wt%)
Measured value 

+1σ for liquid 
e142

(4.51+0.21 wt%)

Extracts a df for cpx

Extracts a df for liq

Figure 7: Investigating the range of calculated pressures and temperatures for a given distribution of noise (here, 1σ values from
repeated measurements of Cpx and Liq in the experimental study of Feig et al. [2010]).

Presses universitaires de �rasbourg Page 370



VOLC

V

NIC

V

5(2): 349–384. https://doi.org/10.30909/vol.05.02.349384

Figure 8: Propagated analytical errors from EPMA analyses
into resulting distributions of pressures and temperatures. 1σ
errors obtained from EPMA software during the analysis of a
Cpx from Gleeson et al. [2020] with 0.38 wt.% Na2O was used
to make 20,000 synthetic Cpx compositions. Pressures and
temperature were then calculated using the Cpx-only thermo-
barometers of Wang et al. [2021] (their Equations 1 and 2) and
[Putirka 2008] (their Equations 32b–d). These results are col-
ored using the hexbin function, and contours around 67 % and
95 % of the data are overlain using Pyrolite [Williams et al.
2020]. We also show the 95 % contour calculated for an ana-
lytical error on Na twice that reported by Gleeson et al. [2020].

distribution of pressures and temperatures can be visualized
with histograms (Step 8).
It can also be informative to display calculated pressures
and temperatures with contouring to show the distribution of
results. Figure 8 shows a Monte Carlo simulation propagating
analytical errors for measurement of a single Cpx of Gleeson
et al. [2020] into a resulting error distribution for pressure and

temperature for Cpx-only thermobarometry. The propagated
1σ error on calculated pressure using the [Wang et al. 2021]
barometer is ±0.39 kbar and ±7 K for temperature. Iterative
solving of Equations 32b–d from Putirka [2008] yields a 1σ
error of ±0.85 kbar and ±10 K. If Na2O was counted for a
shorter time (or using a lower current) during electron mi-
croprobe analyses such that the analytical error was twice as
large (17 %), the 1σ error increases to ±0.62 kbar from Wang
et al. [2021], and ±0.96 kbar from Putirka [2008]. Importantly,
these functions allow users to estimate the uncertainty result-
ing from their specific analytical conditions, and by extension,
can be used to decide appropriate EPMA conditions to obtain
a certain level of precision. The effect of analytical errors on
Cpx-based barometry using these Monte Carlo functions will
be discussed in detail in a follow-up publication.

10 SINGLE GARNET XENOCRYST THERMOBAROMETRY

Thermobarometric calculations of peridotitic garnet
xenocrysts are widely used to determine the thermal
structure of the underlying lithospheric mantle. The com-
position of the peridotitic garnet can be used as a diamond
indicator [Grütter et al. 2004] and to depict the style of mantle
metasomatism [Griffin et al. 2002]. Garnet thermometers
utilize the strong temperature dependence on Ni-partitioning
between garnet and olivine [Ryan et al. 1996; Canil 1999;
Sudholz et al. 2021]. Geobarometers, on the other hand, are
based on Cr-solubility in coexisting garnet and hypothetical
peridotitic orthopyroxene [Ryan et al. 1996]. Thermometers
and geobarometers in Thermobar can be calculated with the
functions calculate_gt_temp, calculate_gt_press and
calculate_gt_press_temp, respectively, after a user loads
in garnet compositions from a spreadsheet with _Gt suffixes.
Constructing a geotherm with garnet thermobarometry is
different to conventional curve-fitting methods. First, one
must construct generalised continental geotherms [Pollack and
Chapman 1977; Hasterok and Chapman 2011] and select a
well-fitting one dependent on the locus defined by the maxi-
mum pressures. This is because not all garnets would poten-
tially satisfy the Cr-saturation (in equilibrium with Cr-spinel)
condition and are likely to underestimate the pressures. For
this reason, the best determination can be made with depleted
garnets with more numerous Cr-spinel temperatures. To de-
termine the depths of these garnets, they have to be projected
vertically down to the constructed continental geotherm. The
constructed geotherms can be chosen to be kinked at the tem-
perature at the base of the depleted lithosphere, which can
be determined by a sudden population decrease of depleted
garnets (Y-in-garnet <10 ppm). The temperatures after this
point are not well-constrained and can be assumed to follow
a kinked geotherm parallel to the diamond-graphite transi-
tion since they seem to follow that trend [Griffin et al. 2003].
This possibly indicates a local and temporal disturbance of the
geotherm inflicted by a heat source [Ryan et al. 1996; Griffin
et al. 2003]. These calculations can be made via the function
plot_garnet_geotherm.
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Figure 9: Composition and thermal structure gathered from garnet xenocrysts thermobarmetry and chemical classificationmeth-
ods, with all calculations and plotting performed in Thermobar. Data is taken from Özaydın et al. [2021]. Compositional sections
are reported with histograms at each ten-kilometre section. From left to right; histogram of CARP classification scheme [Griffin
et al. 2002], number of samples that could be classified with CARP scheme, CaO-Cr2O3 based garnet classification scheme, the
garnet classification scheme of Grütter et al. [2004], calculated P-T of garnet xenocryst samples against the chosen generalised
continental geotherm (37 mW m−2), whole-rock Al2O3 content calculated from Y-content of garnets [O’Reilly and Griffin 2006],
and Mg# contents of olivine co-existing along garnet calculated with the method of Gaul et al. [2000].

10.1 Garnet chemical tomography

Garnet data and constructed garnet-based paleogeotherms can
be utilised to depict the compositional structure of the under-
lying lithospheric mantle with several methods [Griffin et al.
2002]. These classifications can be carried out and plotted
with the function plot_garnet_composition_section func-
tion in the garnet_plot module. To use this functionality,
one needs to have the additional trace element data in addi-
tion to the major element composition.

For example, Figure 9 shows compositional and thermal
information obtained from garnet xenocryst thermobarometry
and chemical classification methods after Özaydın et al. [2021],
recalculated and plotted using functions in Thermobar.

11 INTEGRATION WITH OTHER OPEN-SOURCE Python
TOOLS

In the last few years, there has been an increase in the num-
ber of petrological tools available in Python (e.g. Pyrolite
for geochemical plotting [Williams et al. 2020], MiMIC for melt
inclusion modification [Rasmussen et al. 2020], VESIcal for
volatile solubility [Iacovino et al. 2021]). Having thermobarom-
etry tools available in Python through Thermobar will allow
increased integration between various codes. For example,
one of the most common uses of volatile solubility models is
to calculate the pressure at which a melt inclusion was trapped
based on reconstructing its H2O, CO2, and major element con-
tents at the time of melt inclusion entrapment. To convert
these chemical parameters into a pressure, the temperature of
the melt inclusion at the time of entrapment must also be esti-

mated. On Read The Docs∗ and YouTube†, we show how the
functions convert_to_VESIcal and convert_from_VESIcal
can be used to convert oxide data back and forth from the
formats used in Thermobar and VESIcal so the tools can be
used together.

12 FUTURE WORK
The open-source nature of Thermobar, with code available
on GitHub, means that users can adapt functions, add their
own, or incorporate new thermobarometry or hygrometry
equations as they are published. Authors publishing new
thermobarometry equations can contact the author team of
Thermobar, and an effort will be made to continue to up-
date the available equations. To reflect the probable evolv-
ing nature of this tool, when citing Thermobar, users should
specify which version they used, as well as citing the original
equations used for calculations. For example "Cpx-Liq pres-
sures and temperatures were calculated using equation 30 and
31 of Putirka (2008), implemented through the Python3 tool
Thermobar (version 1.0.1, Wieser et al. 2022)". The version
can be found after importing Thermobar by running the com-
mand:

pt.__version__

Ideally, users should provide the Jupyter notebook used for
calculations for maximum reproducability, and to outline the
various options used (particularly for more complicated oper-
ation such as melt matching, error propagation).
∗https://bit.ly/ThermobarRTD
†https://bit.ly/ThermobarYouTube
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13 CONCLUSIONS

Thermobar is a new tool that provides access to more than
100 popular thermometers, barometers, and hygrometers
through easy-to-implement and customizable functions within
the open-source programming language, Python3. Users can
easily change the equation, pressure, temperature, proportion
of Fe3+ and water content of calculations, iterate towards a
solution when neither pressure nor temperature is known,
compute equilibrium tests, and assess all possible matches of
equilibrium pairs (Cpx-Liq, Opx-Cpx, Opx-Liq, Fspar-Liq) in
a single line of code. The functionality of this tool will al-
low more robust interpretation of the systematic and random
errors associated with thermobarometry and hygrometry in
igneous systems. For example, the design of the functions
means that users can easily switch between equations to inves-
tigate systematic differences between published parametriza-
tions. The Monte Carlo error propagation functions allow
users to assess the amount of random error introduced by their
specific analytical protocol, which complements published un-
certainty estimates for each equation. The fact that users can
publish their workflows in a single Jupyter Notebook (rather
than a myriad of different tools) will help to make thermo-
barometry calculations more reproducible.
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APPENDIX A
Summary tables showing available equations and the names they have been allocated in Thermobar.
Table A1: Summary of equations for liquid-only thermometry. *Note, Putirka 2016 equation 3 does not contain a H2O term, but is
H2O-sensitive because liquid cation fractions are calculated on a hydrous basis. Equations from: Putirka 2008, Sugawara 2000,
Montierth et al. 1995, Helz and Thornber 1987, Beattie 1993, Herzberg and O’hara 2002, Putirka 1999, Molina et al. 2015, Putirka
2016.

Liquid-only thermometry 
Function: “calculate_liq_only_temp” 

Reference Name in Thermobar P-dependent? H2O-dependent? 
 

Olivine-Sat Liquids 

Putirka (2008) T_Put2008_eq13 ✗ ✗ 

T_Put2008_eq14 ✗ 🗸 

T_Put2008_eq15 🗸 🗸 

Helz & Thornber, (1987) T_Helz1987_MgO ✗ ✗ 

Montierth (1995) T_Montierth1995_MgO ✗ ✗ 

Sugawara (2000) T_Sug2000_eq1 ✗ ✗ 

T_Sug2000_eq3_ol 🗸 ✗ 

T_Sug2000_eq6a 🗸 ✗ 

T_Sug2000_eq6a_H7a 🗸 🗸 

Beattie (1993) T_Beatt93_ BeattDMg 🗸 ✗ 

T_Beatt93_BeattDMg_HerzCorr 🗸 ✗ 

Putirka (2008) T_Put2008_eq19_BeattDMg 🗸 ✗ 

T_Put2008_eq21_BeattDMg 🗸 🗸 

T_Put2008_eq22_BeattDMg 🗸 🗸 

Cpx-Sat Liquids 

Putirka (2008) T_Put2008_eq34_cpx_sat 🗸 🗸 

Putirka (1999) T_Put1999_cpx_sat 🗸 ✗ 

Sugawara (2000) T_Sug2000_eq3_cpx 🗸 ✗ 

T_Sug2000_eq3_pig 🗸 ✗ 

T_Sug2000_eq6b 🗸 ✗ 

T_Sug2000_eq6b_H7b 🗸 🗸 

Opx-Sat Liquids 

Putirka (2008) T_Put2008_eq28b_opx_sat 🗸 🗸 

Sugawara (2000) T_Sug2000_eq3_opx 🗸 ✗ 

Beattie (1993) T_Beatt1993_opx 🗸 ✗ 

Amp-Sat Liquids 

Putirka (2008) T_Put2016_eq3_amp_sat ✗ 🗸* 

Molina (2015) T_Molina2015_amp_sat ✗ ✗ 

Fspar-Sat Liquids 

Putirka (2005) T_Put2005_eqD_plag_sat 🗸 🗸 

Putirka (2008) 
 

T_Put2008_eq26_plag_sat 🗸 🗸 

T_Put2008_eq24c_kspar_sat 🗸 🗸 

Ol-Cpx-Plag Sat Liquids 

Putirka (2008) T_Put2008_eq16 🗸 ✗ 

Helz & Thornber (1987) T_Helz1987_CaO ✗ ✗ 
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Table A2: Summary of equations for olivine-liquid and olivine-spinel thermometry. From: Putirka 2008, Beattie 1993, Herzberg
and O’hara 2002, Sisson and Grove 1993, Pu et al. 2021, Pu et al. 2017, Wan et al. 2008, Coogan et al. 2014, Gavrilenko et al.
2016.

Olivine Thermometers and Hygrometers 
Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 

 

Olivine-Liquid thermometry. Function “calculate_ol_liq_temp” 

Putirka (2008) T_Put2008_eq19  🗸 ✗ 

T_Put2008_eq21 🗸 🗸 

T_Put2008_eq22 🗸 🗸 

Beattie (1993) T_Beatt93_ol 🗸 ✗ 

T_Beatt93_ol_HerzCorr 🗸 ✗ 

Sisson and Grove (1992) T_Sisson1992 🗸 ✗ 

Pu et al. (2017) T_Pu2017 ✗ ✗ 

Pu et al. (2021) T_Pu2021 🗸 ✗ 

Olivine-Liquid hygrometers. Function “calculate_ol_liq_hygr” 

Gavrilenko et al. (2016) H_Gavr2016 ✗ ✗  

Olivine-Spinel thermometry. Function “calculate_ol_sp_temp” 

Coogan et al. (2014) T_Coogan2014  ✗ ✗ 

Wan et al. (2008) T_Wan2008 ✗ ✗ 

 

Table A3: Summary of equations for feldspar thermobarometry and hygrometry. From: Putirka 2008, Putirka 2005, Waters and
Lange 2015, Masotta and Mollo 2019.

Feldspar Thermometers, Barometers and Hygrometers 
Phase Reference Name in 

Thermobar 
T-

dependent? 
P-

dependent? 
H2O-

dependent? 

Feldspar-Liquid thermometry. Function “calculate_fspar_liq_temp” 

Plag-Liq Putirka (2008) T_Put2008_eq23  🗸 🗸 

T_Put2008_eq24a 🗸 🗸 

Kspar-Liq Putirka (2008) T_Put2008_eq24b  🗸 ✗ 

Feldspar-Liquid barometry. Function “calculate_fspar_liq_press” 

Plag-Liq Putirka (2008) P_Put2008_eq25 🗸  ✗ 

Feldspar-Liquid hygrometry. Function “calculate_fspar_liq_hygr” 

 
 

Plag-Liq 

Putirka (2008) H_Put2008_eq25b 🗸 🗸  

Putirka (2005) H_Put2005_eqH 🗸 ✗ 

Waters & Lange (2015) H_Waters2015 🗸 🗸 

Masotta et al. (2019) H_Masotta2019 🗸 ✗ 

Plagioclase-Alkali Feldspar thermometry. Function “calculate_plag_kspar_temp” 

Plag-Kspar Putirka (2008) T_Put2008_eq27a  🗸 ✗ 

T_Put2008_eq27b 🗸 ✗ 

T_Put_Global_ 
2Fspar 

🗸 ✗ 
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Table A4: Summary of equations for Cpx thermobarometry. Equations marked with *1 have two forms: in addition to that shown,
users can also add _onnx (e.g. P_Petrelli2020_Cpx_only_onnx). From: Putirka et al. 1996, Putirka et al. 2003, Putirka 2008,
Masotta et al. 2013, Neave and Putirka 2017, Brugman and Till 2019, Petrelli 2021, Wang et al. 2021, Jorgenson et al. 2022.

Clinopyroxene-Liquid Thermobarometers  
Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 

Clinopyroxene-Liquid Barometry. Function “calculate_cpx_liq_press” 

Putirka (1996) P_Put1996_eqP1 🗸  ✗ 

P_Put1996_eqP2 🗸 ✗ 

Putirka (2003) P_Put2003 🗸 ✗ 

Putirka (2008) P_Put2008_eq30 🗸 🗸 

P_Put2008_eq31 🗸 🗸 

P_Put2008_eq32c 🗸 🗸 

Masotta et al. (2013) 
recalibration of Putirka 
eqs. for alkali systems 

P_Mas2013_eqPalk1tex 🗸 ✗ 

P_Mas2013_eqPalk2 🗸 ✗ 

P_Mas2013_eqalk32c 🗸 🗸 

Masotta et al. (2013) P_Mas2013_Palk2012 ✗ 🗸 

Neave & Putirka (2017) P_Neave2017 🗸 ✗ 

Petrelli et al. (2020) P_Petrelli2020_Cpx_Liq*1 ✗ 🗸 

Jorgenson et al. (2022) P_Jorgenson2022_Cpx_Liq*1 ✗ ✗ 

Clinopyroxene-Liquid Thermometry. Function “calculate_cpx_liq_temp” 

Putirka (1996) T_Put1996_eqT1  ✗ ✗ 

T_Put1996_eqT2 🗸 ✗ 

Putirka (1999) T_Put1999 🗸 ✗ 

Putirka (2003) T_Put2003 🗸 ✗ 

Putirka (2008) T_Put2008_eq33 🗸 🗸 

Masotta et al. (2013) 
Recalibration of Putirka 
eqs. for alkali systems 

T_Mas2013_eqTalk1 ✗ ✗ 

T_Mas2013_eqTalk2 🗸 ✗ 

T_Mas2013_eqalk33 🗸 🗸 

Masotta et al. (2013) T_Mas2013_Talk2012 ✗ 🗸 

Brugman & Till (2019) T_Brug2019 ✗ ✗ 

Petrelli et al. (2020) T_Petrelli2020_Cpx_Liq*1  ✗ 🗸 

Jorgenson et al. (2022) T_Jorgenson2022_Cpx_Liq*1  ✗ ✗ 

Clinopyroxene-only Thermobarometers 

 

Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 

Clinopyroxene-only Barometry. Function “calculate_cpx_only_press” 

Putirka (2008) P_Put2008_eq32a 🗸  ✗ 

P_Put2008_eq32b 🗸 🗸 

Petrelli et al. (2020) 
*our adaptations 

P_Petrelli2020_Cpx_only*1 ✗ ✗ 

P_Petrelli2020_Cpx_only_withH2O* ✗ 🗸 

Wang et al. (2021) P_Wang2021_eq1 ✗ ✗ 

Jorgenson et al. (2022) P_Jorgenson2022_Cpx_only*1 ✗ ✗ 

Clinopyroxene-only Thermometry. Function “calculate_cpx_only_temp” 

Putirka (2008) T_Put2008_eq32d  🗸 ✗ 

T_Put2008_eq32d_subsol 🗸 ✗ 

Wang et al. (2021) T_Wang2021_eq2  ✗ 🗸 

Jorgenson et al. (2022) T_Jorgenson2022_Cpx_only*1  ✗ ✗ 
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Table A5: Summary of equations for Opx and Cpx-Opx thermobarometry. From: Putirka 2008, Brey and Köhler 1990, Wells
1977, Wood and Banno 1973. The "Global" and "Felsic" orthopyroxene barometers are from the spreadsheets currently available
at https://bit.ly/PutirkaSpreadsheets. These equations are particularly suited to low pressure, low-Al orthopyroxenes
where other equations return a numerical error.

 

Orthopyroxene Thermobarometers 
Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 

Orthopyroxene-Liquid Barometry. Function “calculate_opx_liq_press” 

Putirka (2008) P_Put2008_eq29a 🗸  🗸 

P_Put2008_eq29b 🗸 🗸 

Putirka Supplement New 
“Global” calibrations 

P_Put_Global_Opx ✗ ✗ 

P_Put_Felsic_Opx ✗ ✗ 

Orthopyroxene-Liquid Thermometry. Function “calculate_opx_liq_temp” 

Putirka (2008) T_Put2008_eq28a  🗸 🗸 

T_Put2008_eq28b_opx_sat 🗸 🗸 

Orthopyroxene-only Barometry. Function “calculate_opx_only_press” 

Putirka (2008) P_Put2008_eq29c 🗸  ✗ 

 

Orthopyroxene-Clinopyroxene Thermobarometers 
Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 

Orthopyroxene-Clinopyroxene Barometry. Function “calculate_cpx_opx_press” 

Putirka (2008) P_Put2008_eq38 ✗  ✗ 

P_Put2008_eq39 🗸 ✗ 

Orthopyroxene-Clinopyroxene Thermometry. Function “calculate_cpx_opx_press” 

Putirka (2008) T_Put2008_eq36  🗸 ✗ 

T_Put2008_eq37 🗸 ✗ 

Brey and Kohler (1990) T_Brey1990 🗸 ✗ 

Wells (1977) T_Wells1977 ✗ ✗ 

Wood and Banno (1973) T_Wood1973 ✗ ✗ 
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Table A6: Summary of equations for amphibole thermobarometry. From: Ridolfi 2021, Putirka 2016, Mutch et al. 2016, Krawczyn-
ski et al. 2012, Ridolfi and Renzulli 2012, Hollister et al. 1987, Ridolfi et al. 2010, Hammarstrom and Zen 1986, Johnson 1988,
Blundy and Holland 1990, Schmidt 1992, Anderson and Smith 1995, Holland and Blundy 1994, Médard and Le Pennec 2022.

Amphibole Thermobarometers  

🗸1* H2O-dependence because of parameterization in terms of hydrous fractions, not a specific H2O-term 
*2 We provide 3 options for how to calculate AlVI 

*3 EquationP=” P_Ridolfi2021” uses an algorithm to combine results of eq1a-1e 

Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 
 

Amphibole-Liquid Barometry. Function “calculate_amp_liq_press” 

Putirka (2016) P_Put2016_eq7a ✗  🗸 
P_Put2016_eq7b ✗ 🗸1* 

P_Put2016_eq7c ✗ ✗ 
Amphibole-Liquid Thermometry. Function “calculate_amp_liq_temp” 

Putirka (2016) T_Put2016_eq4b  ✗ 🗸 
T_Put2016_eq4a_amp_sat ✗ 🗸1* 

T_Put2016_eq9 ✗ 🗸1* 

Amphibole-only Barometry. Function “calculate_amp_only_press” 

Medard & Pennec (2022)*2 P_Medard2022_RidolfiSites 
P_Medard2022_LeakeSites 
P_Medard2022_MutchSites 

✗  ✗ 

Ridolfi and Renzulli (2012) 
& 

Ridolfi (2021) 
 
 

P_Ridolfi2012_1a ✗  ✗ 
P_Ridolfi2012_1b ✗ ✗ 
P_Ridolfi2012_1c ✗ ✗ 
P_Ridolfi2012_1d ✗ ✗ 
P_Ridolfi2012_1e ✗ ✗ 

P_Ridolfi2021*3 ✗ ✗ 
Mutch et al. (2016) P_Mutch2016 ✗ ✗ 

Ridolfi et al. (2010) P_Ridolfi2010 ✗ ✗ 
Hammerstrom & Zen (1986) P_Hammarstrom1986_eq1 ✗ ✗ 

P_Hammarstrom1986_eq2 ✗ ✗ 
P_Hammarstrom1986_eq3 ✗ ✗ 

Hollister et al. (1987) P_Hollister1987 ✗ ✗ 
Johnson & Rutherford (1989) P_Johnson1989 ✗ ✗ 
Blundy et al. (1990) P_Blundy1990 ✗ ✗ 
Schmidt (1992) P_Schmidt1992 ✗ ✗ 
Anderson & Smith, 1995 P_Anderson1995 🗸 ✗ 
Krawczynski et al. (2012) P_Kraw2012 ✗ ✗ 

Amphibole-only Thermometry. Function “calculate_amp_only_temp” 

Putirka (2016) T_Put2016_eq5  ✗ ✗ 
T_Put2016_eq6 ✗ ✗ 

T_Put2016_SiHbl ✗ ✗ 
T_Put2016_eq8 🗸 ✗ 

Ridolfi and Renzuli, 2012 T_Ridolfi2012 🗸 ✗ 
Amphibole-Plagioclase Thermometry. Function “calculate_amp_plag_temp” 

Holland and Blundy, 1994 T_HB1994_A 
T_HB1994_B 

 🗸 ✗ 
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Table A7: Summary of equations for amphibole chemometers. From: Putirka 2016, Zhang et al. 2017, and Ridolfi 2021.

Amphibole Chemometers 
Reference Melt parameter Output name T-dependent? 

Amphibole-only Chemometry. Function “calculate_amp_only_melt_comps” 
Returns all equations by default (need to specify T to get T-dependent equations) 

Ridolfi (2021) ΔNNO deltaNNO_Ridolfi21 ✗ 

H2O H2O_Ridolfi21 ✗ 

Zhang et al. (2017) SiO2 (Eq 1) SiO2_Eq1_Zhang17 ✗ 

SiO2 (Eq 2) SiO2_Eq2_Zhang17 ✗ 

SiO2 (Eq 3) SiO2_Eq3_Zhang17 🗸 

SiO2 (Eq 4) SiO2_Eq4_Zhang17 ✗ 

TiO2 (Eq 5) TiO2_Eq5_Zhang17 🗸 

TiO2 (Eq 6) TiO2_Eq6_Zhang17 ✗ 

FeO (Eq 7) FeO_Eq7_Zhang17 ✗ 

FeO (Eq 8) FeO_Eq8_Zhang17 ✗ 

MgO (Eq 9) MgO_Eq9_Zhang17 ✗ 

CaO (Eq 10) CaO_Eq10_Zhang17 ✗ 

CaO (Eq 11) CaO_Eq11_Zhang17 ✗ 

K2O (Eq 12) K2O_Eq12_Zhang17 ✗ 

K2O (Eq 13) K2O_Eq13_Zhang17 ✗ 

Al2O3 (Eq 14) Al2O3_Eq14_Zhang17 ✗ 

Putirka (2016) SiO2 (Eq 10) SiO2_Eq10_Put2016 🗸 

 

Table A8: Summary of equations for Garnet calculations. From: Ryan et al. 1996, Canil 1999, Sudholz et al. 2021, Griffin et al.
2002, Grütter et al. 2004, Gaul et al. 2000 and O’Reilly and Griffin 2006.

Garnet Thermometers and Barometers  
Reference Name in Thermobar T-dependent? P-dependent? H2O-dependent? 

 

Garnet-only thermometry. Function “calculate_gt_only_temp” 

Ryan et al. (1996) T_Ryan1996  ✗ ✗ 
Canil et al. (1999) T_Canil1999 ✗ ✗ 
Sudholz et al. (2021) T_Sudholz2021 ✗ ✗ 

Garnet-only barometry Function “calculate_gt_only_press” 

Ryan et al. (1996) P_Ryan1996 🗸  ✗ 

Other Garnet Functions 
Garnet classification of Griffin et al. (2002) “garnet_CARP_class_Griffin2002” 
Cr-pyrope classification of Grutter et al. (2004) “garnet_class_Grutter2004” 
Ca-Cr classification of Cr-pyrope of Griffin et al. (2002) “garnet_ca_cr_class_Griffin2002” 

Y-Zr Classification of Cr-pyrope of Griffin et al. (2002) “y_zr_classification_Griffin2002” 

Ol Mg# from Cr-pyrope (Gaul et al. 2000) “calculate_ol_mg” 

Calculate Al2O3 of whole-rock from Cr-pyrope (after 
O’Reilly et al. 2006) 

“calculate_al2O3_whole_rock” 
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