Supplementary Material for:

Catastrophic caldera-forming pyroclastic eruptions and climate perturbations: the result of tectonic and magmatic controls on the Paleocene-Eocene Kilchrist Caldera, Isle of Skye, NW Scotland

Simon M. Drake^{* α}, ⁽¹⁾ David J. Brown^{β}, ⁽¹⁾ Andrew D. Beard^{α}, Padej Kumlertsakul^{α},

David J. Thompson^{α}, ⁽ⁱ⁾ Charlotte L. Bays^{α}, ⁽ⁱ⁾ Ian L. Millar^{γ}, and ⁽ⁱ⁾ Kathryn M. Goodenough^{δ}

^α School of Earth and Planetary Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.

β School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, G12 8QQ, UK.

 $^{\delta}$ British Geological Survey, Research Avenue South, Edinburgh, EH14 4AP, UK.

This Supplementary Material accompanies the article: Drake, S. M., Brown, D., Beard, A., Kumlertsakul, P., Thompson, D., Bays, C., Millar, I. and Goodenough, K. (2022) "Catastrophic caldera-forming eruptions and climate perturbations: the result of tectonic and magmatic controls on the Paleocene-Eocene Kilchrist Caldera, Isle of Skye, NW Scotland", *Volcanica*, *5*(2), pp. 397–432. doi: https://doi.org/10.30909/vol.05.02.397432.

Drake et al. [2022] should be cited if this material is used independently of the article.

* drakesimon1@gmail.com

^Y British Geological Survey, Natural Environment Research Council, Keyworth, Nottingham, NG12 5GC, UK.

	Figure number in paper/ Grid reference/		Sample number		
	supplementary file	plementary file log/ height (in metres)			
Paleosol	Figure 4A	NG 59635 20663, Log 16, 290 m	SD/51		
Amygdaloidal basalt	Figure 4B, Figure S1B	NG 59625 20664, Log 16, 320 m			
Tholeiitic basalt	Figure 4C	NG 96142 20690, Log 16, 355 m	SD/58		
Fall deposit	Figure 4D	NG 59640 20645, Log 16, 295 m	SD/52		
Hawaiite	Figure S1A	NG 58107 23851, Log 15, 5 m	,		
sT- cooling joints	Figure 5A	NG 59999 20876, Log 9, 3 m	SD/217		
sT (XP)	Figure 5B	NG 59999 20876, Log 9, 2 m	SD/217a		
mLTacc	Figure 5C	NG 58238 22102, Log 4, 21 m	<i></i>		
mLT acc scan (XP)	Figure 5D	NG 58238 22102, Log 4, 21 m	SD/5d		
mLT acc scan (PPL)	Figure S2A	NG 58238 22102, Log 4, 21 m	SD/5d		
sT- underside cooling joints	Figure S2B	NG 59999 20876, Log 9, 3 m	SD/217		
sT thin section (XP)	Figure S2C	NG 59999 20876, Log 9, 3 m			
sT thin section (PPL)	Figure S2D	NG 59999 20876, Log 9, 3 m			
mLTacc	Figure S2E	NG 58230 22095, Log 4, 8 m			
mLTacc	Figure S2F	NG 58230 22095, Log 4, 8 m			
mLT acc EMP image	Figure S2G	NG 58238 22102, Log 4, 21 m	SD/5d		
mLTacc- oblate	Figure S2H	NG 58238 22102, Log 4, 21 m			
mBr containing guartzite block	Figure 6A	NG 59992 20854. Log 9. 9 m			
mLT	Figure 6B	NG 59574 20917. Log 16, 630 m	SD/76		
mLT (XP) resorbed quartz	Figure 6C	NG 60673 20643. Log 13, 19 m	SD/226a		
mBr/mLTi faulted contact	Figure 6D	NG 59583 20818, Log 16, 500m	- ,		
mLT tupe III enclave	Figure 6E	NG59805 20997. Log 18, 220 m	SD/89		
mBr clast supported (thin section	Figure S3A	NG 59677 20417. Log 16, 25 m	SD/33		
XP)					
mBr clast supported	Figure S3B	NG 59677 20417, Log 16, 25 m	SD/33		
dsLT	Figure S4A	NG 59802 20301			
mLT	Figure S4B	NG 59676 21028. Log 10. 40 m	SD/219		
mLT- thin section calcite	Figure S5A	NG 59682 20508. Log 16, 142 m	SD/36		
mLT (XP) diseguilibrium-fan	Figure S5B	NG 60673 20643. Log 13.18 m	SD/226		
spherulite	0		- / -		
mLT (XP) disequilibrium- alk fspa	Figure S5C	NG 60673 20643. Log 13.18 m	SD/226		
mLT (XP basaltic lapilli	Figure S5D	NG 59676 21028. Log 10, 40 m			
mLTi containing tupe III enclaves	Figure 7A	NG 59619 20757. Log 16, 447 m	027-13		
mLTi fiamme/cooling joints	Figure 7B	/B NG 59620 20756 Log 16, 440 m			
mLTi matrix	Figure 7C	NG 59355 21087 Log 18, 292 m	SD/93		
mI Ti containing tupe III enclaves	Figure 7D	NG 59619 20754 Log 16, 442 m	00790		
mI Te eutavitic fabric	Figure 7F	NG 59424 20980 L og 14 305 m			
mI Te (PPI)	Figure 7F	NG 59565 20901 Log 16,610 m	SD74		
mLTi tupe II enclave	Figure S6A	NG 59625 20773 Log 16 445m	SD/64		
mI Ti melt globule	Figure S6B	NG 59692 21051 Log 10, 110m	SD/219a		
mLTi suallou tail fiamme	Figure S6C	NG 59625 20773 Log 16, 445 m	SD/64		
mI Ti mechanicallu fractured	Figure S6D	NG 59625 20773 Log 16, 445 m	SD/64		
fiamme		110 35023 20113, Ebg 10, 113 III	00/01		
mI Ti containing fiamme	Figure S6F	NG 59625 20773 Log 16 445 m	SD/64		
mLTi Tupe III enclave	Figure S6F	NG 59603 20795 Log 16, 476m	SD/66		
mI Ti containing framme/enclaves	Figure S6C	NG 59625 20773 Log 16, 470III	SD/66		
mLTi (56.14 \pm 0.10 Ma)	Figure 17C D	NG 59618 20782 $(I \text{ or } 16.445 \text{ m})$	SD/04		
mIT lavalike	Figure 8A	NG 59345 21145 Log 18 318 m	SD ANSI SD/83		
mLT lava like (YD)	Figure 8B	NG 50345 21145 Log 18 219 m	SD/03		
mIT lava like paratavitic febric	Figure 8C	NG 59346 21146 Log 19 216	SD/03		
(PPI)		110 33340 21140, LOg 10, 310 III	50/02		

Table S1: Grid reference of figures and sample numbers

Rock type/feature	Figure number in paper/ supplementary file	Grid reference/ log/ height (in metres)	Sample number	
Tuff filling fissure- Allt Coire Forsaidth	Figure 8D	NG 6026821232		
Tuff filling fissure	Figure 8E	NG 59623 20840		
Tuff filling fissure	Figure 8F	NG 59623 20840		
mLTe- eutaxitic fabric	Figure S7A	NG 58094 23560, Log 8, 5 m	SD/216	
mLTe- eutaxitic/swallow tails	Figure S7B	NG 58094 23560, Log 8, 5 m	SD/216	
mLTe- rotated lapilli	Figure S7C	NG 60307 21223, Log 12, 47 m		
Mafic enclaves in mLTe	Figure S7D	NG 59659 20985, Log 10, 5 m		
mLTe cooling joints	Figure S7E	NG 58226 22093, Log 4, 3m		
mLTe (PPL)	Figure S7F	NG 59355 20997, Log 18, 242 m	SD/85	
mLTe (PPL)	Figure S7G	NG 59355 21155, Log 18, 315 m	SD86	
mLTe- type II enclaves	Figure S7H	NG 58094 23560, Log 8, 5 m	SD/216	
mLT lava-like- recumbent folding	Figure S8A	NG 59346 21146, Log 18, 316 m	SD/82	
mLT lava-like- parataxitic fabric	Figure S8B	NG 59346 21146, Log 18, 316 m	SD/82	
mLT lava-like- recumbent folding	Figure S8C	NG 59346 21146, Log 18, 316 m	SD/82	
mLT lava-like- type II enclaves	Figure S8C	NG 59346 21146, Log 18, 316 m	SD/82	
mLT lava like micro-folding (PPL)	Figure S9A	NG 57994 23274, Log 7, 15 m	SD/210	
mLT lava-like parataxitic fabric	Figure S9B	NG 59346 21146, Log 18, 316 m	SD/82	
(XP)				
mLT lava like micro hinge (PPL)	Figure S9C	NG 57994 23274, Log 7, 15 m	SD/210	
mLT lava like micro hinge (XP)	Figure S9D	NG 57994 23274, Log 7, 15 m	SD/210	
mLT lava-like	Figure S10A	NG 60180 21230		
Fissure filled tuff in dyke	Figure S10B	NG 62154 23527	AB/1A	
Spherules in fissure filled rhyolitic tuff	Figure S10C	NG 62154 23527	AB/1B	
mLT lava-like	Figure S10D	NG 61803 23119		
Tuff filling fissure	Figure S10E	NG 59589 20965		
Grading within mBr	Figure 9A	NG 54301 25012	SD/B2	
Granite lithic lapilli inclusion in	Figure 9B/ Figure 17A, B	NG 54301 25012	SD BS/01	
basic dyke (56.45 ± 0.15 Ma)				
sT	Figure 9C	NG 54301 24908	SD/B4	
mLTacc	Figure 9D	NG 54325 24866		
dsLT	Figure 9E	NG 54328 24646		
mLT matrix to clast supported	Figure 9F	NG 54308 24994	SD/B3	
mBr- gabbro blocks	Figure 9G	NG 54345 24591		
Granitic inclusions in dyke	Figure 10A	NG 63191 20477	SD/252 SD/BS01	
Granitic inclusion clusters in dyke	Figure 10B	NG 63191 20477	SD/252 SD/BS01	

Table S1 [cont.]: Grid reference of figures and sample numbers

Table S2: Abbreviations for lithologies used on Kilchrist map (Figure 3) and logged sections (Logs A, Logs B) after (and modified from) Branney and Kokelaar [1992, 2002].

Ignimbrites	Lithology			
mLT	Massive lapilli tuff			
dsLT	Diffuse stratified lapilli tuff			
mBr	Massive breccia			
dslB	Diffuse stratified lithic breccia			
mLTacc	Massive lapilli tuff accretionary lapilli bearing			
mLTi	Massive lapilli tuff incipiently welded			
mLTe	Massive lapilli tuff with eutaxitic fabric			
mLT lava-like	Massive lapilli tuff lava-like			
sT	Stratified tuff			
Extrusives				
bas	Basalt			
mug	Mugearite			
haw	Hawaiite			
Intrusives				
Tuff	Tuff filling fissures			
Brecciated tuff	Brecciated tuff within fissure			
Rhy	Rhyolitic dyke			
KH	Kilchrist hybrid, mixed magma intrusive			
Others				
paleo	Paleosol			
рер	Peperite			
ash lay	Ash layer			

1 SAMPLING AND METHODS

Mapping at Kilchrist was conducted over two field seasons with particular emphasis placed on detailed logging (Figures S3 and S4) in order to correlate lithofacies and establish an eruption history. Thin section analysis was conducted on both polarising microscope and electron microprobe.

Major element mineral analyses were obtained using a Jeol JXA8100 Superprobe (WDS) with an Oxford Instruments AZtec system (EDS) at Birkbeck College, University of London. EDS analysis was carried out using an accelerating voltage of 15 kV, current of 1 μ A, and a beam diameter of 1 μ m. with an acquisition time for 20 seconds. A proxy to bulk elemental whole rock analysis, was determined by multiple area (100 × 40 μ m) scan analysis of representative matrix, carefully avoiding lithic lapilli in the case of ignimbrites, and phenocrysts in the case of lava. Analyses were calibrated against standards of natural silicates, oxides and Specpure metals with the data corrected using a ZAF program.

2 KVF LITHOFACIES (ADDITIONAL NOTES IN CONJUNC-TION WITH SECTION 4 MAIN TEXT)

Basic lavas (Tholeiite, Hawaiite, Mugearite)

Tholeiitic basalts and highly subordinate hawaiites and mugearites comprise the basic lavas at Kilchrist. Volumetrically, basic lavas are the dominant rock type in the study area, and may be cut by sporadic, ≤ 0.5 m-thick, NNW–NW-trending dykes of the regional Paleocene swarm. Lava stratigraphy is best observed in Allt nan Suidheachan (Log 16) where four shallowly inclined flows crop out over 90 m along the stream bed. The dip of these lavas is $\leq 10^{\circ}$ towards the SSE which suggests a maximum true total thickness of ~8 m. Each flow is capped by either a paleosol, or tuff layer and at the base of the uppermost lava, peperite is recorded.

In the west of the study area around Creagan Dubh both hawaiites (Figure S1A) and mugearites form the prominent crags. However, whilst contact relationships between lava types at Creagan Dubh are absent, the lowermost hawaiite flows are ~50 % thicker than overlying mugearite flows. The mugearite is aphanitic, blocky, and cut by irregular joints. Elsewhere cross cutting relationships between basalt, ignimbrite and intrusive igneous rocks are numerous, and lava flows are frequently intercalated with ignimbrite lithofacies for example mLT and mBr around Allt Nan Suidheachan, (Log 16, Logs B). It is not possible to correlate lava flows in the south with flows at either Creagan Dubh (Log 15, Logs A) or NW of Loch Cill Chriosd to establish any temporal relationship. Chemically, tholeiite lavas at both Kilchrist and Creagan Dubh are akin to the Skye Main Lava Series Bell and Williamson 1994]. Such lavas plot in the same geochemical fields as mafic enclaves contained within mLT (Figure S11). The inter-lava flow tuff layers are interpreted as fall deposits which were produced in eruptions that occurred between emplacement of lavas.

Basalt may be aphanitic, amygdaloidal or porphyritic, and is commonly highly altered and brecciated. Zeolites occur towards the top and bases of individual tholeiitic flows (Figure S1B). The majority are oblate towards the top of flows, and larger and less rounded, towards flow bases. EMP analysis shows tholeiitic olivine basalt is the most common basic lava at Kilchrist and typically contains altered augite and forsterite, turbid calcium rich feldspars, and chloritised clinopyroxene with calcite reaction rims. Fayalite frequently has \leq 30 µm thick ferro-richterite reaction rims. Clino-pyroxenes are commonly twinned and possess resorbed margins. The youngest lavas in the south and west of the study area are hawaiites and are exposed in Allt nan Suidheachan (Log 16, Logs B) and Creagan Dubh (Log 15, Logs A). They lack amygdales, possess abundant olivine phenocrysts (Fo₇₈₋₅₅), labradorite (An₅₅₋₆₁), chloritized clinopyroxene, and sporadic magnetite. In thin section mugearite contains andesine-labradorite (An₃₀₋₅₅) phenocrysts and has a flow aligned groundmass.

Paleosols, ash horizons, peperite

Paleosols are fossil lateritic soils that form by in situ weathering, oxidation and leaching of extrusive eruptive products (principally basalt) under warm, wet, conditions [Bell and Harris 1986; Bell et al. 1996; Emeleus et al. 1996]. The presence of paleosols indicates that flows were not continuous and that hiatuses were long enough for primitive soils to form on flow tops. Two paleosols and a laminated tuff layer crop out intercalated between tholeiite lava flows in Allt nan Suidheach in the south of the mapping area (Log 16 290–296 m, Logs B). The paleosols are ≤ 5 cm thick, dark red, fine-grained, fissile and grade down over ≤ 10 cm into underlying flows and there is a reduction in colour intensity with depth. Conversely the tuff layer retains a deep red colour throughout its profile, is fine grained, laminated, fissile and has a sharp contact with underlying lava. In thin section the tuff layer contains euhedral augite, quartz, plagioclase, and heterogeneous lithic fragments. Such features could not have been produced in a primitive soil. Under EMP backscatter former glass shards, and axiolitic devitrification of frequently broken bubble wall margins are evident within the tuff layer. The layer is composed of highly oxidized, altered glass, within an altered granular matrix, containing mafic lithic fragments, anhedral oligoclase, and quartz. The SiO₂ matrix content is 24.97 % whilst FeO is 32.95 %. Groundmass phases include K-feldspar. zircon, and sporadic chrome spinel with magnetite rims ($\leq 25 \, \mu m$ thick). Basaltic and granitic fragments with embayed margins are present in the groundmass. Rare, localised, peperite is present as a ≤ 20 cm thick layer at the base of the uppermost tholeiitic lava in Allt nan Suidheachan (log 16, 335m, Figure S4, NG 59625 20664). Here lobate mafic clots ≤ 4 cm in length are surrounded by \leq 70 % ash -granular matrix which is highly friable. Clots may either be completely isolated within the matrix, or clustered together in a jigsaw-fit separated by matrix. Slight normal grading of mafic clots [Brown and Bell 2007] is evident within the layer. The presence of peperite provides evidence that paleosurfaces were locally covered with unconsolidated, likely wet, sediment and that lava interacted with these [White et al. 2000]. Grading indicates that settling of larger mafic clasts within the sediment occurred during peperite formation [Brown and Bell 2007].

Figure S1: Field characteristics of KVF lavas. [A] Blocky hawaiite lava at Creagan Dubh (Log 15, 5m height, Logs A). [B] Laterally discontinuous zeolite rich regions within amygdaloidal basalt. Frequently such regions grade into aphanitic fractured basalt (Log 16, 320 m height, Logs B).

Stratified tuff (sT)

Rhyolitic stratified tuffs (sT) are rare in the study area and only found in one stream section (Log 9, Logs B). This unit is ~3.5 m thick, columnar jointed and laterally extensive for ~20 m (Figure S2B). It is juxtaposed on the east bank with both mBr and mLT in a faulted contact. Columnar joints which pervade the unit, are variably 4–5 sided, spaced ≤30 cm apart, and plunge 60→040 (Figure S5B). At macroscale alternating fine grained, melanocratic and leucocratic laminations ≤1 mm thick are orientated at ~90° to these columns. The rock has a matrix content of ≥95%, and contains sporadic arkosic sandstone lithic fragments ≤8 mm diameter. Such lithics are frequently draped with ash (Figure S2C, D).

Stratified tuff matrix is rhyolitic, and comprises quartz, K-feldspar, albite, titanite, chlorite, and sporadic allenite, and zircon crystals. The leucocratic laminations comprise normally graded domains (\leq 70 µm thick) of quartz and alkali feldspar which alternate with thinner ungraded (\leq 10 µm thick), melanocratic domains of chloritized quartz, magnetite and ilmenite. Changes in chemistry are reflected between these alternating laminations, and opaque minerals and chlorite are the principal minerals in melanocratic layers, and only found sporadically in leucocratic layers. Cross-stratification within leucocratic laminations (Figure S2A) is evident within several layers together with evidence of loading, syn-sedimentary faulting, and normal ash grading.

The fine-grained laminations and ash drapes within sT indicate deposition were generated via direct fall-out from eruption ash clouds. Ash was necessarily hot, due to the presence of contractional cooling joints, which were probably developed as a result of rapid burial that accounted for minimal heat loss. Such contractional cooling joints within sT have previously been reported from Taupo, New Zealand [Wilson and Walker 1985]. Loading and cross stratification within sT indicates sub-aqueous reworking took place following deposition and probably accounts for the unit preservation. Brittle offset of layers was probably induced by volcano-tectonic induced faulting which was contemporaneous with eruptions.

Accretionary lapilli bearing mLT (mLTacc)

Ash aggregate-bearing units fringe the Eastern Red Hill granites laterally over 1.5 km (logs 1, 4, 6, 8, Logs A), range in thickness from 80 cm to 3 m, and contain accretionary lapilli together with sporadic cored accretionary lapilli. The most complete ash aggregate-bearing section contains two units of matrix-supported mLTacc (Log 4, 9, and 23 m, Logs A). Both units have a fine-grained, crystal-poor, vitroclastic matrix $(\geq 90\%)$, which contains concentric (spherical to sub-spherical) accretionary lapilli, with normally graded, multiple laminae (Figure SF/2c-d). At outcrop fabric within mLTacc is highlighted by sub-parallel linear trails of cored rounded accretionary lapilli, and oblate accretionary lapilli. The lower mL-Tacc unit (Log 4, Logs A) is approximately 2.5 m thick, and contains ≤ 5 % rounded to sub-rounded (Figure S2F) accretionary lapilli (≤ 15 mm diameter) sensu Thordarson [2004]. Within individual accretionary lapilli, laminae are normally graded from core to rim (Figure S2G) and whilst the majority in the upper unit (Log 4, Logs A) are highly spherical, a few are oblate (Figure S2H). Conversely the upper unit contains numerous broken, angular accretionary lapilli fragments, together with ~5 % cored accretionary lapilli that have up to 4 parallel- sub parallel concentric layers, and an armoured outer layer (≤ 1 mm thick). Pellets as described by Brown et al. [2010] are not evident within the study area. Chemically mLTacc matrix varies from basaltic andesite to dacite (??), is fine-grained, contains broken glass shards, and small basaltic (labradorite-bytownite, magnetite and chlorite-after clinopyroxene) and granitic (albite, quartz, k-feldspar, rutile, and illmenite) lithic fragments (\leq 50–130 µm). Matrix phases may comprise K-feldspar, quartz, clinopyroxene, Ca-plagioclase,

Presses universitaires de Strasbourg Figure S2: (Caption next page)

Figure S2: (Previous page) Field and petrographic characteristics of stratified tuff (sT) and accretionary lapilli bearing massive lapilli tuff (mLTacc). [A] PPL scan of sT from Cnoc nan Uan Subtle changes in ash chemistry are reflected in layer colouration. Melanocratic layers are richer in magnetite, ilmenite and titanite and have been chloritized. [B] Underside of steeply plunging columnar cooling joints within sT on the west bank of Cnoc nan Uan (Log 9, 3 m height, Logs B). [C] XP image of slide in [D] showing sporadic quartz-rich sandstone lithic lapilli (L) with fabric draped around it. To the upper right of the lithic lapilli, quartz rich domains are truncated below an upper layer of laterally continuous quartz crystals. This cross-stratification (xs) provides compelling way-up evidence (to top of photomicrograph), and may indicate re-working, in a sub-aqueous environment. [D] PPL image showing sporadic quartz-rich sandstone lithic lapilli (L) with fabric draped around it. To the upper right of the lithic lapilli, quartz rich domains are truncated below an upper layer of laterally continuous quartz crystals. This cross-stratification (xs) provides compelling way-up evidence (to top of photomicrograph), and may indicate re-working, in a sub-aqueous environment. [E] Accretionary lapilli (Log 4, 8 m height, Logs A) comprising weathered out core and concentric laminations within a silicic, matrix rich, mLTacc. [F] Accretionary lapilli (core to right), with lapillus laminae grading normally towards left of image. (Log 4, 23 m height, Logs A). Note the sharp nature of individual concentric laminations. [H] Oblate accretionary lapilli which have been syn-post depositionally deformed in a soft state during PDC transportation.

oligoclase, zircon, chrome, spinel, rutile, epidote, and biotite and \sim 75 % of samples are chemically more evolved from core to rim.

It is envisaged that ash pellets acting as nucleation points, grew into accretionary lapilli by rapid coalescence of wet ash within warm turbulent up drafted plumes. The growing accretionary lapilli then reached a critical density, and fell into underlying PDCs, where they continued to grow, and accrete, during transportation. Such a scenario is similar to that envisaged to have produced mLTacc deposits in the 273 ka Poris ignimbrite, Tenerife Brown et al. 2010]. At Kilchrist, both mLTacc units are very fine grained, and highly matrix supported, which suggests they were deposited from cool moist currents [Branney and Kokelaar 1992]. Normally graded laminations within individual lapilli, probably reflect cohesional variations within the generating ash clouds Moore and Peck 1962], or changes in available moisture content within the thermally stratified transporting PDC. The presence of oblate accretionary lapilli indicates that parts of transporting PDCs contained enough moisture to promote syn-post depositional soft-state deformation.

Massive breccia (mBr) and diffuse-stratified lithic breccia (dslBr)

Massive breccia (mBr) covers a lateral extent of ~2.5 km, and commonly forms the steep crags south of Beinn Dearg Bheag, west of Cnoc Nam Forsaidh, and on Meall Coire Forsaidh and frequently succeeds mLT gradationally, both vertically and laterally, over distances of 1-5 m. mBr units typically possess erosive bases (Logs 18, 16,10,15, 5, Figure S4), and range in thickness from 1-20 m, apart from units around Meall Coire Forsaidh which range from 35-60 m in thickness. In this study we differentiate between mBr containing small blocks (64-256 mm) and mBr containing large blocks (256 mm). Matrix supported mBr may possess a localised incipient welding fabric, evidenced by slight imbrication patterns of lithic lapilli, and streaked out pumices with length: width ratios of <5:1. Compositionally blocks are heterolithic and may be fractured (Figure S3B) comprising arkosic sandstone, amygdaloidal and aphanitic basalt, quartzite, calcareous sandstone, dolostone, mLTi, mLTe, mLT lava-like, and mBr. Blocks reach a maximum size of $\sim 1 \text{ m} \times 60 \text{ cm}$ in mBr and may be angular to sub-angular or sub-rounded. mBr units commonly exhibit lithic grading patterns, i.e. ungraded, graded or reverse graded (Figure S3B). Reverse graded mBr is the most common breccia lithofacies. Exfoliation and thermal spalling of blocks (log 16, 50 m height, Logs B) is a common feature of reverse graded mBr. Frequently rounded blocks have exfoliated thermally spalled rims pervasive to a depth of ~1.5 cm with fine-grained ash present between individual layers. Columnar cooling joints (15 cm-1.1 m diameter) are common within mBr with a block population <17 cm diameter. Such columns may be either poorly developed (1–3 sided), or well developed (5-6 sided). Column development is not apparent in mBr that contains blocks >17 cm diameter. Matrix supported mBr may contain sporadic gas-escape structures including lithophysae and elutriation pipes (e.g. Log 15, 200 m height, Logs A). Lithophysal cavities may be oblate to amorphous, and in places fringed with marginal epidote. Localised imbrication of blocks within breccia is evident near the contact with Meall Dearg Bheag and on steep crags composed of breccia for example Meall Coire Forsaidh. Such imbrication is a useful indicator of both flow direction and way-up. Massive breccia may be juxtaposed with other ignimbrites across fault planes. For example, matrix supported mBr in Allt nan Suidheachan (Log 16, 500 m, Logs B) is faulted against incipiently welded mLTi and a ≤ 10 cm thick layer of angular mLTi fault gouge is evident at the fault plane.

Matrix within mBr is typically dacite-rhyolitic in composition (Figure S12) and contains former vitric chloritised bubble wall shards, sub-rounded quartz crystals, K-feldspar, albite, chlorite, zircon, epidote, titanite, and sporadic allanite, pyrite, and calcite. Frequently, matrix appears isotropic due to glass replacement by very fine-grained chlorite. Matrix lithics may be highly variable (e.g. granitic lapilli, basalt, mLT, mLTi, mLT lava-like). Mechanical fracture of matrix lithic lapilli is common at both macro-scale and in thin section. Within the matrix sporadic, aphanitic type II mafic enclaves [Troll et al. 2004] are strongly deformed around lithic fragments. Such mafic enclaves lack chilled margins. The numerous heat-derived features within mBr (contractional cooling

Figure S3: Field and petrographic characteristics of massive breccia (mBr). [A] Photomicrograph of mBr (log 16, 25 m, Logs B) showing planar mechanical fracture (mf) of quartzite lithic lapilli (bottom right-hand corner). Unwelded glass shards in top right-hand corner and a lobate margined silicic enclave (se) in mid-ground, are in close proximity to a rounded quartz crystal (rq). XP field of view 2 mm. [B] Heterolithic blocks within clast-supported, reverse graded mBr containing blocks of rounded red arkosic sandstone with radial fractures (rf), rounded blocks (rb), mechanical fracture (mf) of angular quartzite (right and below hand lens for scale-5 cm length), sub-rounded blocks of aphanitic basalt and reddish arkosic sandstone (Log 16, 50 m height, Logs B).

joints, lithophysae, thermal spalling of blocks, together with inter-layer ash, provide compelling evidence of genesis within 'hot' high particle concentration PDCs. Conditions at aggrading depositional flow boundaries were dominated by fluidescape processes [Branney and Kokelaar 2002], where temporal and spatial changes in supply and filtering of components took place. Mechanically fractured, and faceted blocks within mBr, indicate block collision and abrasion during transportation. Sporadic alignment of lapilli within mBr matrix, together with slight deformation of matrix around lithic lapilli suggests transporting PDCs were turbulent. The graded nature of mBr deposits indicates eruptions were non steady state, and periodically waxed and waned in terms of vent energy output, and therefore had capacity to transport different sizes of block. Electron Micro-Probe area scans of mBr matrix samples indicates considerable chemical heterogeneity exists within individual mBr units and that matrix may be chemically variable over samples ≤ 1 m apart. This suggests deposition of mBr probably took place via incremental progressive aggradation [Branney and Kokelaar 1992] within 'hot' PDCs. The presence of mafic enclaves within mBr matrix indicate basic melt fractions were periodically incorporated into highly silicic PDCs Sparks et al. 1977; Eichelberger 1980; Folch and Martí 1998].

Diffuse stratification of lithic blocks largely comprised of quartzite, mLT-lava like, and basalt crop out around the upper reaches of log 16 (Logs B, NG 59488 21333). Diffusely stratified lithic- breccia (dslBr) may contain a bi-modal block population where lithics comprised of mBr and mLTi are block sized, and basalt blocks are generally smaller (around NG 59325 21324). In close proximity small blocks of mLTi and mLT lava-like have been deformed plastically which suggests they were incorporated into PDCs in a molten–semi molten state. Diffusely stratified lithic breccias are highly localised, frequently die out laterally over several metres into mLT, and generally crop out in stage 4 KVF units (discussed in main text).

Massive lapilli tuff (mLT) and diffuse-stratified lapilli tuff (dsLT)

Silicic mLT is the most abundant type of ignimbrite within the study area, and is typically 30-95 % matrix supported, cropping out as ≤ 10 m thick, laterally impersistent units, which frequently interdigitate with other ignimbrite lithofacies. Most mLT is preceded or succeeded by mBr, with gradational contacts taking place over 10s of cm. mLT lapilli populations are heterolithic with ungraded mLT being most common (Figure S4B), followed by reverse graded, and highly subordinate normally graded mLT. Units display complex grading patterns Most mLT units are poorly sorted, matrix-supported, <10 m thick, non-stratified, and crop out as laterally discontinuous units. Their matrix varies from coarse to granular, is highly variable in colour (mid- to light-grey, to dark green, chloriteepidote altered), and contains ubiquitous sub - rounded quartz crystals ≤ 2 mm diameter. Most lapilli are highly angular to sub angular, and the dominant clast types are arkosic sandstone and quartzite. Subordinate clast types are amygdaloidal basalt, dolostone, mLT, mLTe, mLT lava-like, and mBr. Normally graded mLT frequently contain sporadic outsized angular blocks (Log 3, Figure S3). Within the most complete logged section (Log 16, Logs B) basalt (aphantic, porphyritic, and amygdaloidal) is the most abundant lapilli type within mLT, together with arkosic sandstone.

At the macroscale 'heat' derived features such as lithophysae, contractional cooling joints, and thermal spalling are common features within mLT. Sporadic, ellipsoid to lenticular shaped, hollow lithophysae $\leq 5 \times 3$ cm, are evident around Creagan Dubh (Log 15, 212 m height, Logs A) throughout unit

profiles. Contractional cooling joints are also common within mLT (Log 13 at 12 m height, log 10 at 30 and 75m height and log 6 at 25 m height; Logs B), and are often poorly developed, with columns spaced \leq 30 cm apart. The majority of columnar joints are planar-slightly curved, and spaced ≤ 15 cm apart. mLT units at Kilchrist are highly variable both chemically and petrographically, and predominantly matrix supported. Matrix may be vitric or fine- medium grained, and variably basaltic-basaltic andesite-rhyolitic-trachytic in chemistry (Figure S12). mLT units are heterolithic with respect to lithics, and may contain sub-rounded to sub-angular basalt, arkosic sandstone, quartzite, calcareous sandstone, pumice, mLT, mLTi, mLTe, and mBr lapilli which are commonly chloritised. Sub angular to sub-rounded matrix lithic fragments (60-250 µm size fraction) are common, and are granitic (K-feldspar, quartz and chlorite or K-feldspar, titanite, quartz and Ca-rich epidote), to basaltic (labradorite, chlorite, allanite, rutile, calcite, and opaques) in affinity.

Ubiquitous sub-rounded quartz crystals ≤ 2 mm diameter, type III mafic enclaves, type II enclaves, alkali feldspars with fritted margins (Figure S5C) and marginal chlorite, and fan spherulites (Figure S5B) are common within matrix. Resorbed quartz crystals and mafic enclaves occur throughout matrix supported mLT units and are frequently chloritised with chilled margins. They may be either very fine-grained, or possess ≤ 40 % randomly orientated feldspar laths, and have highly irregular lobate margins. Undeformed silicic bubble wall glass shards (Figure S5D) may be apparent within lapilli pressure shadows and often former glass is devitrified, and amorphous. Calcite is present within numerous samples as both groundmass crystals (Figure S5A), and as late-stage cross cutting vein infill. Frequently quartz crystals located in pressure shadows between lithic lapilli have 120° triple junctions.

The absence of volcanic bombs, and the presence of cooling joints, lithophysae, and thermal spalling of lapilli, argues for transportation and deposition within 'hot' PDCs. Conditions within PDCs fluctuated throughout eruption duration, (evidenced by grading profiles of lapilli) and fluid escapedominated processes operated at flow boundary zones within aggrading PDCs. Ungraded mLT deposits indicate steady state eruptions, together with sustained PDC deposition, and constant eruption plume heights. Reverse graded mLT was also deposited at a fluid-escape dominated depositional flow boundary zone [Branney and Kokelaar 2002], where temporal and spatial changes in supply and filtering of current components took place. Increasing lapilli size within reverse graded profiles, likely reflect increases in vent/conduit mass flux, together with changes in size and height of eruption columns during sustained eruptions [Branney and Kokelaar 2002]. Mechanical fracture of lapilli indicate collision of lithics took place in high concentration PDCs. Such collisions were probably enhanced by seismic rupturing [Smith et al. 2010]. Normally graded mLT (coarse tail grading of lithic lapilli) were probably deposited in conditions of waning mass flux/current flow, where PDCs were unable to transport the size of lithic lapilli that mBr depositing PDCs carried. Conversely normally graded lithic profiles probably reflect decreasing availability of lithics for scavenging, due to the paleo-surface being rapidly

 \mathbb{Y} Presses universitaires de Strasbourg

buried by aggrading PDCs, or may be due to selective filtering [Branney and Kokelaar 2002]. Spalled lithic lapilli within mLT matrix are rare features, and indicate cooling and reheating of lithics took place during transportation in host PDCs.

Diffuse stratified lapilli tuff (dsLT) crops out sporadically throughout, and within, the extent of the southern inner ring fault, and typically comprises millimetre to decimetre layering of coarse ash, to granule sized matrix. Within individual outcrops stratification whilst parallel, may thicken, or rarely splay into mLT. Individual dsLT units are overwhelmingly laterally discontinuous over distances of ≤ 5 m, and vertically may pass into mBr or mLT, either gradationally over distances ≤ 1 m, or sharply. Angular to sub-rounded lithic lapilli may form laterally discontinuous parallel to sub-parallel alignment between stratified matrix (around NG 59802 20301). Units of dsLT may also be variably reverse to normally graded (Figure S4A), with respect to lithic lapilli. Individual lithic lapilli within dsLT are frequently mechanically fractured, and sporadic sub-rounded to rounded lapilli may have outer margins with curviplanar spalled like fractures.

The lateral gradation of dsLT into mLT over a few metres indicates that particle concentrations, and shear gradients within the flow boundary zone of aggrading PDCs, varied between fluid escape dominated to traction dominated. Diffuse stratification is interpreted as indicating subtle unsteadiness within the flow-boundary zone of sustained depositing PDCs [Branney and Kokelaar 2002]. Such unsteadiness has been attributed to either successive surges in fluctuating sustained currents, frictional effects within granular flow-dominated flow boundary zones, or, periodic turbulent eddies [Branney and Kokelaar 2002].

Massive lapilli tuff, incipiently welded (mLTi)

mLTi crops out both south and west of the Eastern Red Hills laterally over ~400 m south of Beinn Dearg Bheag (Log 10, 16–18, Logs B), and ~1 km west of Beinn Dearg Mhor (Log 1 and 15, Logs A). These units are frequently laterally discontinuous over distances of ≤ 5 m, and grade into mLT, mBr, mLTe, or mLT lava-like. In the west units are much thinner, less numerous, and contact relationships between mLTi and adjacent lithologies both laterally or vertically, are frequently absent due to lack of exposure. Where present, contacts are either gradational, undulatory, or sharp and erosive. mLTi units frequently contain cooling joints (SF6c) which may be poorly-well developed, with individual columns spaced between 5–60 cm. mLTi varies in matrix content (\leq 80 %), lithic type, fabric intensity, and grading profiles. Lapilli may comprise sub-angular to sub-rounded basalt, quartzite, arkose, or mLTe. Fiamme (≤ 15 cm in length) are common in matrix and frequently have swallow tails (Figure S6E, G). Parallel to sub-parallel alignment of reverse graded fiamme is common (Log 16, 445m height, Logs B). Increase in fiamme length to width ratio (from ~3:1 to >10:1) over distances of ≤ 2 m is often accompanied by a subtle reverse grading of both lithic lapilli (Logs 1, 15, 16, Logs A, Logs B, and type III mafic enclaves. mLTi groundmass is rhyolitic (Figure S12), and contains deformed bubble wall shards, sporadic resorbed crystal phases, and angular to sub-angular fragments of quartz rich

Figure S4: Field characteristics of diffuse stratified lapilli tuff (dsLT). [A] Reverse graded to normal graded dsLT (NG 59802 20301) containing mechanically fractured sub-rounded arkose lapilli. Hatched white lines indicate a very weak stratification. The unit youngs (Y) to top left of photo. [B] Ungraded mLT containing mechanically fractured sub-rounded arkosic lithic lapilli (Log 10, 40 m height, Figure S4).

lithic lapilli. Ubiquitous sub-rounded matrix quartz crystals \leq 550 µm, have embayed margins mantled by Fe-rich chlorite, and are frequently mechanically fractured. Matrix quartz and K-feldspar, are frequently inter-grown with chloritized pumices. mLTi matrix displays a pronounced incipient fabric (Figure S6A) and may contain recrystallised silicate melt globules (Figure S6B), varietal allanite and pyrite, together with accessory polycrase, xenotime, and dendritic zircon. Incipient welding of matrix fabric is evidenced by glass shards ($\leq 2 \mu m$ across) which have been deflected around lithic lapilli (Figure S6A). Deformation of this glass occurred as a result of synpost-depositional shear and loading, which forced shards into a preferred orientation [Branney and Kokelaar 2002]. However, glass shards next to lithic lapilli are often situated within pressure shadows and are less deformed. Outside of pressure shadows fiamme are commonly mechanically fractured and sheared (Figure S6D). Different states of welding intensity, indicated by varying intensity of shard deformation, are often apparent within the same thin section. Type III mafic enclaves $\leq 400 \,\mu\text{m}$ across, are common within the matrix (Figure S6F). They possess lobate margins, and may or may not have chilled margins. Where evident, chilled margins are \leq 30 µm thick. Matrix fabric is frequently deformed around enclaves which indicates enclaves were rigid when entrained within PDCs (Figure S6F). The poor sorting and absence of tractional stratification within mLTi units suggest that deposition took place within high-concentration, fluid-escape dominated, depositional flow boundary zones of 'hot' PDCs Branney and Kokelaar 2002]. Reverse grading of fiamme, and lithic lapilli, suggests vent mass flux was non-steady state, and periodically increased in intensity. Repeating cycles of mLTi and mLTe (evident over distances of ~10s of metres) suggests that fluctuations in both conduit energy levels, and eruption plume heights varied temporally. Reverse grading of mLTi units towards the top of Logs 17 and 18 (Logs B) suggests flux levels increased towards the latter stages of mLTi producing eruptions. Within these units, reverse grading of mafic blebs also suggests increased tapping of sub-surface mafic melt, and enhanced magma mingling took place towards the latter stages of those eruptions.

Massive lapilli tuff with eutaxitic fabric (mLTe)

Field identification of mLTe is frequently hampered by lack of evident microfabric, which is only later apparent in thin section. This problem is well known in ancient volcanic terrains, and has recently been highlighted at the Sgurr of Eigg Brown and Bell 2013. However, mLTe with pronounced eutaxitic fabric (Figure S7A, B) crops out to the south and west of Beinn Dearg Bheag (Logs 10,13,14,16,17,18, Logs B) and west of Beinn Dearg Mhor (Logs 1,2,6,7,15, Logs A). Individual mLTe units may range from 1-40 m in thickness, but the vast majority are <4 m thick. There are two notable exceptions. Firstly, a 30 m-thick continuous mLTe unit capped by mLT with a highly erosive base, crops out in the west (Log 7, Logs A). Secondly in the south (Logs 16, 18, Logs B) repeating cycles of mLTi and mLTe, crop out in both tributaries of the upper reaches of Allt nan Suidheachan (Logs 16, 18, Logs B). Some of the mLTe units are ≤ 25 m thick, (between 730–755 m). In log 16 these repeating mLTi and mLTe cycles have a lateral extent of 55 m, and in log 18 some 197 m. In both of these logged sections alternating deposits of mLTi and mLTe are capped by mBr. Cooling joints are common within mLTe units (Figure S7E), with individual columns spaced 0.6– 1.5 m apart, and typically plunging at angles $\leq 15^{\circ}$. Weathered surfaces are frequently white in colour, whilst fresh rock is commonly black or dark grey. Matrix is fine grained to glassy, and in content ≤ 90 %. Matrix welding states may be highly variable. Where matrix is intensely welded, lithic lapilli may show evidence of rotation during PDC transportation (Figure S7C). Lithic lapilli within matrix may comprise amygdaloidal basalt, aphanitic basalt, mLT, mLTe, mLT lavalike, arkosic sandstone, or quartzite. Eutaxitic matrix fabric is

Figure S5: Petrographic characteristics of mLT. [A] Ubiquitous calcite (c) occurs both as sub-rounded lithic lapilli (bottom left), and interstitially as laterally discontinuous bands, evident to the right of a sub-rounded quartz (q) crystal, XP. (Log 16 142 m height, Logs B).[B] XP image of a fan spherulite (s) [after Lofgren 1974] within mLT matrix. Spherulite is composed of quartz fibres (f) radiating from a single point. Nucleation and growth started on the margins of a former gas cavity (lithophysae). Distorted matrix fabric (fa) suggests lithophysae growth was syn-post depositional. Secondary quartz (s) infills the lithophysae (Log 13, 18 m height, Logs B). Type III rounded matrix mafic enclave (me), with highly irregular lobate margins (lm) see (Log 18, 220 m height, Logs B). [C] XP image of alkali feldspar crystal (af) with fritted margins (fm) fringed by marginal chlorite (mc) within matrix supported mLT (Log 13,18 m height, Logs B). [D] XP image of clast supported mLT containing fine grained, sub-rounded, basaltic lithic lapilli (b) and undeformed glass shards (g). A bubble wall shard is evident to top left of the basaltic lapilli (Log 10, 40 m height, Logs B) XP image of a fan spherulite (s) (after Lofgren, 1974) within mLT matrix. Spherulite is composed of quartz fibres (f) radiating from a single point. Distorted matrix fabric (fa) suggests lithophysae growth was syn-post depositional. Secondary quartz (b) and undeformed glass shards (g). A bubble wall shard is evident to top left of the basaltic lapilli (Log 10, 40 m height, Logs B) XP image of a fan spherulite (s) (after Lofgren, 1974) within mLT matrix. Spherulite is composed of quartz fibres (f) radiating from a single point. Distorted matrix fabric (fa) suggests lithophysae growth was syn-post depositional. Secondary quartz (s) infills the lithophysae (Log 13, 18 m height, Logs B).

Figure S6: (Caption next page)

Figure S6: (Previous page) Field and thin section characteristics of incipient welded massive lapilli tuff (mLTi). [A] XP Scan of mLTi from Log 16, 445 m height, (Logs B). White hatched lines indicate incipient fabric (f), secondary quartz crystals (q) have overgrown this fabric, which contains type II mafic enclaves (me). [B] silicic melt (sm) globule with lobate margins (lm) above fiamme in [E] XP, (Log 10, 62 m height, Logs B). [C] Close up of cooling joints (cj) in [C] within mLTi showing fiamme (f) and sub-rounded lithic lapilli (li) (Log 16, 445 m height, Logs B). [D] XP photomicrograph of fiamme (f) which has recrystallised to micro-crystalline quartz within a glass (g) matrix. The fabric has been deflected around the fiamme, which itself has been mechanically fractured. (Log 16, 445 m, Logs B). [E] Type II mafic enclave (me) closely associated with swallow tailed fiamme (f) within mLTi. (Log 16, 445 m height, Logs B). [F] A type III mafic enclave (me) with highly irregular lobate margin (lm) and plagioclase laths (pl), within mLTi matrix which has a strong fabric (fa) deflected around the enclave, PPL (Log 16, 476m height, Logs B). [G] Matrix rich mLTi containing fiamme (f), with chloritized core, and swallow tail (st), with a length to width ratio of \leq 10:1. Individual fiamme are \leq 15 cm in length, (Log 16, 445 m height, Logs B). Note ubiquitous Type II and III mafic enclaves (me), and columnar cooling joints (cj) which are perpendicular to an incipient left-right orientated fabric. Basaltic lithic lapilli (Li) lack lobate margins.

typically deformed around type II and III mafic enclaves (Figure S7G, H). Such enclaves have highly irregular margins, are frequently chloritised, and comprise ≤ 5 % of matrix content. In hand specimen some enclaves are very fine-grained, whilst others possess up to 20 % randomly orientated felspar crystals, and possess 1–2 mm thick chilled margins.

All mLTe matrix is rhyolitic in composition (Figure S12), extremely fine-grained and commonly contains dominant quartz >55 %. Other matrix phases are alkali feldspar, chlorite, Fe-rich chlorite and accessory allanite and zircon. Rounded quartz, embayed quartz and type II (Figure S7D) and III mafic enclaves are common within matrix. Skeletal allanite frequently occurs as overgrowths around unrounded mechanically fractured matrix quartz. Former glass shards have frequently re-crystallised to quartz, and are mechanically fractured. Often such mechanically fractured quartz has ($\leq 25 \mu m$ thick) palagonitised rims. Palagonite rimmed quartz within mLTe deposits has been recorded elsewhere [Ross and Smith 1961; Riehle 1973; Riehle et al. 1995; Freundt 1999]. Cuspate matrix fiamme are frequently streaked out into a pronounced fabric and deformed around matrix lithics (Figure S7F-H). Matrix lithics are commonly ≤ 4 mm diameter, sub-angular to sub-rounded, and may comprise granite, aphanitic basalt, amygdaloidal basalt, or arkosic sandstone. Un-deformed bubble wall glass shards are visible within pressure shadows adjacent to lithic lapilli. Away from pressure shadows fiamme are streaked out with length: width ratios of \geq 20:1. Within thin section both evidence of vitroclastic textures may be destroyed and welding intensity may increase within mLTe samples over distances of <1 mm.

Deposition of mLTe units took place from highconcentration, fluid-escape dominated, depositional flow boundary zones of 'hot' PDCs as indicated by poor sorting and absence of tractional stratification [Branney and Kokelaar 2002]. Temperatures within mLTe producing PDCs were likely to have been >600 °C, because welding of rhyolite has been shown experimentally to commence above this temperature [Bierwith 1982]. Syn-post depositional shearing and compaction, was accompanied by glass shard agglutination, whilst stress free areas existed in pressure shadows around lithic lapilli, where glass shards were largely undeformed. Localised shear stress varied considerably in intensity over very short distances, since eutaxitic and parataxitic fabric commonly occur together in the same thin section. Heat is needed to promote welding, and it is envisaged that air ingestion into eruption columns was therefore minimal, and PDCs were generated via low-fountaining fissure events. The presence of ubiquitous chlorite indicates that fluids and halogens were present during and after the deposition from PDCs [Duffield and Dalrymple 1990]. Type II and type III mafic enclaves within the matrix, indicate mafic melt was being introduced into rhyolitic PDCs throughout eruptions.

Lava like ignimbrite (mLT lava-like)

mLT lava like ignimbrites crop out west of Beinn Dearg Mhor (log 7, Logs A) and south of Beinn Dearg Bheag (log 12, 13, and 16, Logs B), as laterally discontinuous units, 1.8–6 m thick, capped by either mLT or mBr. Upper contacts are sharp and erosive whilst lower contacts are gradational over distances ≤ 30 cm. In log 7 mBr grades vertically into mLT lava-like over ≤ 0.5 m and in log 16 mLTe grades into mLT lava-like over ≤ 20 cm vertically. Similarly, mLT lava-like may grade laterally into mLTe or mLTi over distances ≤ 2 m (log16, 615– 620 m height, Logs B).

In hand specimen mLT lava-like is flow banded, vitrophyric, and contains ≤ 5 % angular lithic lapilli ≤ 30 mm diameter. An orange weathered rind pervades $\leq 2 \text{ mm}$ whilst fresh rock is frequently white in colour. Banding is on a submm scale (Figure S8A, B), and comprises contorted leucocratic and melanocratic layers, often forming recumbent folds (Figure S8A, C), antiform- synform pairs, or ptygmatic folds. An intense parataxitic fabric is frequently deflected around lithic lapilli, and amorphous, chloritised, type II mafic inclusions (Figure S8D). Rare lithophysae ($\leq 3 \text{ cm long}$) are present in the matrix, and vary in form from lenticular, amorphous to oblate. mLT lava-like is highly matrix rich (≤ 95 %), extremely fine grained, and rhyolitic in composition (Figure S12). The main matrix phases are quartz and alkali feldspars, with highly subordinate plagioclase, rutile, chlorite, zircon and monazite. A very strong sub-linear parataxitic fabric pervades the matrix, which is composed of alternating leucocratic and melanocratic layers.

Leucocratic layers are composed of µm thick laminations of quartz, alkali feldspar and rare monazite. Melanocratic layers are highly chloritised, and contain allenite, titanite, and

Figure S7: (Caption next page)

Figure S7: (Previous page) Field and petrographic characteristics of massive lapilli tuff with eutaxitic fabric (mLTe). [A] Intensely welded eutaxitic fabric (ef) delineated by hatched white lines deflected around angular rhyolitic lithic lapilli (li) \leq 1cm (Log 8, 5 m height, Logs A). Intensely welded eutaxitic fabric (ef) delineated by hatched white lines deflected around angular rhyolitic lithic lapilli (li) ≤ 1 cm (Log 8, 5 m height, Logs A). [B] Same locality where matrix often appears glassy and black. Eutaxitic fabric (ef) is evident top right to bottom left. Fiamme are highly streaked, and virtually closed swallow tails (sw) are evident. [C] lithic lapilli of mLTi incorporated within mLTe (Log 12, 47 m height, Logs B). Note how external eutaxitic fabric (ef) is strongly deflected around rhyolitic mLTi lithic lapilli (r). [D] Type II mafic enclaves (me) and angular chloritized lapilli (li) recorded in Log 10, 5 m height, (Logs B). [E] nature of the angular relationship between columnar cooling joints (cj), and eutaxitic fabric (ef) in [D]), which is orientated approximately perpendicular to columnar jointing. Matrix is highly silicic and frequently glassy. Note strong parallel/eutaxitic fabric (bottom right) evident within the white weathered surface. [F] PPL photomicrograph of pronounced eutaxitic fabric within mLTe (Log 18, 242 m height, Logs B) containing mafic clast (m), butted up against rotated lithic lapilli (l). Note the presence of cuspate fiamme which have been deflected above and below the mafic clast. Eutaxitic fabric (white hatched lines) orientated parallel to chloritised fiamme (f). Note fiamme are reverse graded from bottom to top of photograph (Log 14, 305 m height, Logs B). [G] PPL photomicrograph of mLTe from Log 18, 315 m height, (Logs B). The highly contorted matrix fabric is deflected around angular quartz crystals (q) and ubiquitous streaked out, lobate, type II mafic enclaves (me). [H] PPL photomicrograph of rounded quartz (q), and type II mafic enclave (me) with lobate margin (Im), within a partially chloritised silicic matrix. The enclave clearly post-dates top to bottom trending quartz veins, (Log 8, 5 m height, Logs A).

fan spherulites of quartz [Lofgren 1974]. Spherulites are concentrated at the outer margins of melanocratic layers. Matrix layers have been strongly deformed into a parataxitic fabric [Pioli and Rosi 2005] around crystals, and lithic lapilli (Figure S9B–D). Matrix fabric consists of parallel to rectangular shaped domains which are laterally discontinuous on a micron scale. Compressional features such as en-echelon micro scale 'piggy back' thrust slices occur sporadically throughout mLT lava-like matrix. Extensional features are also evident for example boudinaging of quartz rich parataxitic fabric in the hinge regions of micro-scale antiforms. Elsewhere, antiforms and antiform-synform pairs are common within matrix.

Lithic lapilli within mLT lava-like comprise sub-angular fragments of micro-granite, rhyolite, and sub-rounded basalt. Quench features such as matrix spherulites are very common and may radiate out from a single point source or fringe parataxitic fabric margins in trails. Spherulite cores comprise strain free quartz crystals, with margins frequently interlocking at 120° triple junctions. Spherulite cores are surrounded by radiating fibres of K-feldspar, themselves mantled by quartz. Lithophysae and axiolites are subordinate volumetrically to spherulites within matrix. Spherulites are frequently orientated parallel to parataxitic fabric, and spherulitic rich domains are located between leucocratic or melanocratic domains. They are either radial, or lithophysal spherical structures [Lofgren 1974; Breitkreuz 2013]. Within mLT lavalike matrix fan spherulites are volumetrically subordinate to spherical spherulites. External fabric is frequently deformed around both type II and III mafic enclaves. Individual enclaves may contain plagioclase that is either aligned in a sub-parallel orientation, or randomly orientated. mLT lava-like was deposited incrementally during very hot (≤1000 °C) quasi-single sustained eruptions, from very low, fissure fed fountaining columns [Branney and Kokelaar 1992; 2002]. Macroscale evidence of extremely 'hot' ~1100 °C [Andrews and Branney 2011] emplacement of mLT lava-like deposits is evidenced by the flow banded vitrophyric texture, spherulitic rich domains, and lithophysae. During transportation within PDCs the amount of heat present, topographic gradient, and viscosity, were suf-

PX F

ficient to promote rheomorphic flow. This resulted in intense folding (i.e. ptygmatic, recumbent, antiform-synform pairs) and faulting which is evident both at macro and micro-scale (Figure S9A). The post depositional brittle state of mLT lavalike is evidenced by the presence of en-echelon micro faults which were probably caused after the deposit cooled, and passed through the glass transition zone.

Fissures containing rhyolitic tuff are often in close proximity ($10 \le 40$ m) to lava like ignimbrite (logs 12 and 16, Logs B). However, such fissures are not always evident near mLT lavalike deposits (e.g. log 7 and log 13, Logs A, Logs B). During eruptions lava-like ignimbrite producing PDCs were syn-postdepositionally welded and agglutinated on paleo-topography, before cooling through the glass brittle–ductile transition zone [Freundt 1999; Russell et al. 2003]. The very close proximity of fissure fed tuff to outcrops of mLT lava-like and their very similar chemistry (Figures S12 and S13) strongly suggests PDCs were fed from fissures.

The presence of ubiquitous mafic blebs within mLT lavalike matrix indicates magma-mingling took place extensively between rhyolitic, and mafic-rich melt bodies, throughout mLT lava-like producing eruptions. Since the margins of mafic blebs are lobate, and external fabric is deflected around them, a pronounced temperature difference must have existed between host rhyolite, and introduced pulses of mafic melt, during incorporation into PDCs.

Tuff filling fissures (TFF)

Within logs 11,12, and 17 (Logs B) fissure filled tuff \pm brecciated tuff crops out along NW–NNW trending linear outcrops. The most extensive of these fissures is 380 m long, links Logs 11 and 17 then broadly parallels the east bank of Allt nan Suidheachan. The fissure resembles a dyke, but lacks either chilled margins, or cooling joints. The fissure is offset and ranges in thickness from ≤ 5 cm–4 m. Tuff contained within the fissure is fine grained, weathers white, has an intense near vertically orientated fabric, and contains sheath folds whose axes are sub-parallel to the pervasive fabric. They appear as

Figure S8: Field and petrographic characteristics of lava-like massive lapilli tuff (mLT lava-like). [A] Intensely folded lava-like ignimbrite, contains angular rhyolitic tuff (li) lapilli \leq 1 cm in length. [B] mLT lava-like, (Log 18, 316 m height, Logs B) a flow banded vitrophyre, with intense planar parataxitic fabric (pf). The matrix is deflected around sporadic rhyolitic tuff lapilli (li), towards both top and bottom of image. [C] mLT lava-like, (Log 18, 318 m height, Logs B) which has been rheomorphosed into a recumbent antiform. Hammer head is 17 cm long. [D] Type II mafic enclaves (me) within mLT lava-like ignimbrite with intense fabric (f), (Log 18, 316 m height, Logs B).

Figure S9: Petrographic characteristics of mLT lava-like. [A] Photomicrograph in PPL showing antiform-synform pair within mLT lava-like matrix (Log 7, 15 m height, Logs A). Vergence was from the right of the image, and produced micro- imbricate thrust slices (1= oldest, 3=youngest). [B] XP image of parataxitic 'banded' fabric with mineralogically different layers (leucocratic and melanocratic). Vitroclastic texture has been destroyed by agglutination and coalescence of glass shards. Parataxitic fabric is deflected around quartz crystals (q), and micro-granite lithic lapilli (I). [C] PPL image of the hinge region within a). Region 1 boudinaged quartz rich layers, are juxtaposed with quartz rich glass (g). Region 2 is much finer grained, and parataxitic like fabric terminations, can be seen in leucocratic layers. [D] XP image of [C] showing intense parataxitic region at 1 and 2. Undeformed glass shards (g) are evident in areas which were subjected to less strain.

'eye like structures on rock surfaces' normal to the transport direction. Fabric is frequently deformed around sub-circular to these oblate sheath folds which are ≤ 7 cm long, occur in clusters, and comprise a core and ≤ 5 concentric rings. The kinematics of the sheath folds suggests flow direction of fissure fed tuff was to the SSW. Substantial thicknesses of alternating mLTi and mLTe units, together with a mLT lava-like unit crop out ~30 m SSW of the fissure (Log 16, height 720–790 m and log 18 height 0–318 m, Logs B). Lapilli of fissure-derived tuff are contained within the mLT lava-like exposure.

In hand specimen the tuff contains sporadic angular mafic lithic fragments (≤ 4 mm diameter) and ubiquitous chloritised type III enclaves ≤1 cm diameter. Intense 'rheomorphic' matrix folding occurs around pumiceous fragments. Lithophysae are common throughout the outcrop. At Allt Coire Forsaidth rhyolitic fissure filled tuff is ~10 m thick and crops out for 170 m along a faulted stream section. The rock is autobrecciated and is pervaded by randomly orientated elutriation pipes, containing recrystallised glass, and angular quartz fragments. A strong sub-vertical fabric is frequently deformed around weathered in recesses, and auto-brecciated clasts of tuff. Direct contacts between the tuff and mLT lava-like are not evident. However, sub-horizontally flow-banded, vitrophyric, mLT lava-like (Figure S10A) crops out on the opposite stream bank ≤ 5 m from the tuff strongly suggesting the mLTlava like was fed from the fissure.

The fissure fed tuffs are rhyolitic (Figure S13) and have extremely similar whole rock geochemistry to adjacent mLT lava-like deposits (Figure S12). Thin sections comprise $\leq 95 \%$ devitrified glass together with abundant spherical spherules (0.5–4 mm diameter) of radiating crystals of quartz and alkali feldspar. Tuff matrix is frequently pervaded by perlitic cracks and contains type II and III mafic enclaves together with dendritic alkali feldspar crystallites and rare magnetite and pyrite. The extremely close proximity of mLT lava-like and mLTe to fissure fed tuffs, together with similar matrix chemistry suggests high-grade ignimbrites were fissure fed during very 'hot' eruptions in upward flaring multiple conduits (Figure S10B–D). These fissures frequently coincide in orientation with NNW trending dykes of the regional Paleogene swarm. The ubiquitous presence of mafic enclaves within all fissure fed tuff suggests basic magma pulses were incorporated into silicic chambers throughout eruptions. Field evidence further suggests that some fissures were 're-exploited' by later NNW basic dykes of the regional swarm since they chill into, and are juxtaposed with, fissure fed tuff (log 11, Logs B, Figure S10E).

Figure S10: Field characteristics of tuff filling fissures and mLT lava-like in close proximity. [A] Spherulitic lava-like ignimbrite within 50m of tuff filling fissure on western bank of Allt Coire Forsaidh. [B] Silicic tuff filling a fissure (TFF) outside the inner ring fault at Allt a Choire. The fissure is NNW trending, sinuous, and cross cuts Cambro-Ordovician dolostone of the Strath Suardal Formation (SSF). [C] Spherulitic (S) rhyolitic tuff within the fissure at [B] separated by sub-parallel planar fabric, in places fabric is contorted around individual spherulites (NG 62154 23527). [D] Localised 5 m \times 2 m mLT lava-like deposit filling a paleo-depression ~300 m from B and C at NG 61803 23119. Note the presence of cooling joints (CJ). [E] Fissure filled tuff juxtaposed with later basaltic dyke (trending NNW) and mBr (log 11, Logs B). Mafic magma has therefore exploited fissures previously exploited by silicic magma.

Table S3: Radiometric age determinations on Palaeogene rocks from the Kilchrist area. Ages in millions of years (Ma).

Eastern Red Hills Centre (ERH)	Age (Ma)	System
Silicic inclusions within mafic dyke, Ben Suardal (NG 63191 20477)	56.45 ± 0.19	U-Pb*
mLTi Allt nan Suidheachan (NG 59618 20783)	56.15 ± 0.19	U-Pb*
Beinn an Dubhaich Granite	55.89 ± 0.15	U-Pb^\dagger
Pitchstone dyke cutting Beinn na Caillich Granite	55.7 ± 0.10	$\mathrm{U} extsf{-}\mathrm{Pb}^\dagger$

* This study;

[†] Unpublished U-Pb analysis by M. A. Hamilton, Jack Slattery Geochronology Laboratory, Department of Geology, University of Toronto, in Emeleus and Bell [2005].

3 Logs A

Logs 1-8 and 15 West of Beinn na Caillich Centre

Log 4 5822622093-5824322107

Notes Contact with granite Clast supported mLT contains outsized rhyolitic blocks <26x15 cm which contain accretionary lapilli. Majority of blocks are <26 x 5cm of angular mLTe and sub rounded arkosic sandstone. Matrix supported mLT comprising 60%, fine grained, green, matrix. Maximum block size 10 x 8 cm of mLTe. Most are ≤5.5cm and sub-angular. Exposure pervaded by cooling joints which are spaced ≤5cm apart. mLT, matrix supported, ≤ 70% matrix, fine grained, mid grey, which contains concentric accretionary lapilli ≤5mm diameter. Majority of lapilli are sub-angular quartzite <1cm x 5mm. Coarsening upwards matrix supported mBr, comprises 40%, fine grained matrix, and outsized sub-rounded blocks of arkosic sandstone \leq 31x17cm. Most clasts of arkosic sandstone are lapilli and small block sized< 8x4cm. mLT, clast supported, fining upwards. Angular mLTe lapilli ≤6x4cm. In places unit is matrix supported with up to 50% matrix. Cooling joints sporadically pervade the exposure and are sub-vertical. Clast supported mBr containing basaltic scoria blocks \leq 22x9cm with lobate margins. Also angular mLTe blocks ≤9x3cm majority are >6x 3cm. Erosional contact with overlying mLT which is matrix supported (40% matrix), fine grained, green and contains bomb sized clasts of partially melted arkosic sandstone ≤15x12cm. Accretionary lapilli occur sporadically throughout different levels in unit with maximum diameter of 1.5cm. Matrix supported mLTacc, the accretionary lapilliacc comprise approximately 5% of outcrop and are oblate. Their maximum size is 1.4 cm x 5mm. Randomly orientated net veins pervade the exposure. The matrix comprises 40% and is fine grained green, insipient welded fabric is deflected around sub rounded arkosic sandstone lapilli which are < 5x4cm. Matrix supported, mLT. Matrix comprises 80% and is very fine grained, green. The dominant lapilli type is quartzite ≤4 x 3 cm. Matrix supported mLT, approx 30% fine grained green matrix, contains clasts of sub angular mLTe ≤8x5cm, also sub rounded arkosic sandstone ≤1.5 x1cm. Evidence of mechanical fracturing of clasts. Cooling joints average spacing 8-10 cm apart.

Matrix supported mBr with approximately 40% matrix. Contains blocks of mLTe \leq 12x10cm sub rounded. Intense fabric but is not deflected around lithics.

Clast supported heterolithic mLT. Contains angular rhyolitic lapilli \leq 4x2cm, amygdaloidal basalt \leq 4x3 cm together with sub-angular, and sub-rounded arkosic sandstone \leq 6x4cm.

Log 5; 58211 22134 -58222 22148

Notes

58222 22148 Contact with granite

Clast supported mBr with erosive base. Reverse graded blocks of basalt ≤20x15cm, basaltic scoria blocks maximum size 12x5cm. At base of unit blocks reach maximum 7cm across, but most are lapilli size.

Matrix supported mLTacc, matrix ~90%, black, very fine grained. Lapilli are mainly mLTe max size < 0.5×0.3 cm. Lateral variations in lapilli size over 2-3 metres.

Matrix supported mLT, ~90% matrix, which is black and very fine grained. Outsized blocks of quartzite s10x7cm angular. Most lapilli are $\leq 3x1$ cm, sub rounded arkosic sandstone. The exposure is blocky with psuedo cooling joints, which are spaced up to 15cm apart and reach a maxmum width of 20cm.

mLTacc at base (at 7.5m height), individual accretionary lapilli are <1cm diameter and rounded. Unit grades upwards into matrix supported mLT which comprises lateral trains of quartzite chips with matrix fabric deflected around them. The succeeding unit is a matrix supported mLT, with erosive base. The unit here contains bomb sized blocks of amorphous mLTe <13x5cm, sub-angular rhyolite <9x7cm, arkosic sandstone <3x2.5cm. Here matrix is fine grained, green, and comprises approx 60% of unit,

mLTacc. Accretionary lapilli are sub-circular with maximum diameter of 8mm.. Sporadic lapilli are oblate and some agglutinated.

Matrix supported mLT. The matrix ~40% and contains sub-rounded arkosic sandstone lapilli <5.5 x5 cm, fining up over 1.5m. Matrix is light grey, very fine grained, quartz rich, with unresolvable black flecks.

Matrix supported mLT matrix ~70%, fine grained, quartz rich, and contains sporadic euhedral pyrite. Matrix contains sub rounded mafic blebs <3mm length. Also sub rounded quartzite lapilli <6x3cm, most are in the size fraction <2 x 1.5cm.

Height Log 6; 58174 22206-58199 22232

Log 7; 5800223276-5805723267

Log 8; 58097 23555- 58139 23523

Log 15: 58107 23851- 58279 23830 Sheet 1

4 Logs B

Kilchrist logs 9-14 and 16-18 South of Beinn na Caillich Centre

Height

Matrix supported brecciated tuff ~80% matrix cut by sub vertical elutriation pipes. Within pipes randomly orientated quartz and black lithics <3x2mm. Pipes are free of fines and contain sub spherical quartz crystals <2mm diameter, and ellipsoidal chloritised pumice \leq 4x2mm. Blocks within matrix are tuff \leq 45x28cm.

Notes

Matrix supported brecciated tuff ~70%, mid grey, medium grained, matrix. Containing blocks of sub rounded tuff and sub angular mLTe. Blocks are reverse graded to a maximum size of 35x16cm. Blocks are mantled by intensely deformed fabric in matrix. Some smaller blocks (≤ 8x6 cm) are faceted.

Pervasive planar fabric within tuff orientated approximately normal to cooling joints

Sporadic sub circular lithophysae ≤5x4cm

Matrix supported brecciated lapilli tuff matrix ~90% medium grained, mid grey, quartz and feldspar rich. Lithics of sub rounded mLTe ≤8x6cm, majority of lithics are ≤ 5x3cm. Evidence on weathered outcrop surfaces of weathering in of former pumices?. Intense fabric is deformed around enclosed clasts indicating that clasts have rotated during transportation. Clasts are less competent than matrix and are weathered in, blocks same as matrix.

Matrix supported brecciated tuff, blocks ~20% are sub angular mLTe \leq 10x6 cm. A pervasive fabric is deformed around existing blocks and weathered out recesses of pre-existing blocks.

Height Log 13; 60663 20653- 60705 20626 Notes 50 -60705 20626 End Section × × KH × X × Medium grained hybrid intrusive containing quartz, alkali feldspar and mafic blebs with diffuse margins. × × The maximum size of cauliform mafic blebs ≤1.2cms x8mm. 45 No Matrix supported mLTe, matrix black, very fine grained, ~70%. Contains sub rounded amygdaloidal mLTe 20 basalt ≤5x3cm, and sub angular mLTe ≤2x1.5 cm, pervasive fabric throughout outcrop which is deformed around lapilli. D mLT Matrix supported mLT, clast content approx 40%, lithics of angular rhyolite ≤14.5x5cm, and angular D 10 , quartzite ≤12x6cm, majority of lithics are lapilli sized <2x1cm and angular. \sim 60673 20643 15 mLT mLT, matrix ~95%, very fine grained, black, contains spherules of quartz <2mm diameter, strongly developed cooling joints spaced 2-7cms apart. Lithic lapilli of sub angular rhyolite and mLTe ≤1cm x8mm. mBr Matrix supported mBr, in places clast supported in others matrix supported.. Max clast size 11.5x9cm 0 of sub rounded mLTe, poorly sorted, clasts vary from 0.2cm-11.5cm diameter. Overall unit coarsening 10 up, lateral variations in clast size, in places pervasive matrix fabric deformed around lapilli. Matrix supported mLT lava like, matrix ~70%, very fine grained, glassy in places, dark grey. Lithics of angular mLT ≤5x4cm. Pervasive fabric throughout matrix of unit containing refolded folds, fold mLT amplitude ≤2cm, ptygmatic folding. Rock has sub rounded weathered in recesses ≤3x4mm. lava like Evidence of lithic rotation and evidence of faceting. Unit contains outsized blocks of 17x11cm sub rounded rhyolite ≤ 17x11cm, and sub rounded quartzite ≤12x9cm. Fabric very intense where lithic content is low and the lithic size is ≤ 2x 1cm. 5 mLT matrix, fine to medium grained ~95%, mid grey. Basaltic angular lapilli ≤6x3mm. White mLT 1-1 F. 181 weathered surface to outcrop. Weathered out lapilli of angular rhyolite ≤12x4mm. No exp Fine to medium grained, crystalline, intrusive, contains guartz, alkali feldspar, and lobate mafic 0m KH - 60663 20653 blebs which are ≤12x4mm fine med coarse lapilli small large block block 2<64/64<256 /256 >2⊴64 ×64 <256 mm mm ash ≤2mm

✓ Presses universitaires de Strasbourg

Log 14; 59961 20419 - 59905 20997, sheet 2

Matrix supported mLT, 40% medium grained, friable, grey matrix, Contains angular quartzite and arkosic sandstone lapilli ≤ 5x2cm. Locally unit may be clast supported and is reverse graded.

mLT lava like, ≤90% matrix, white, fine grained, highly folded into recumbant, ptygmatic and intra folial folds. Matrix contains sporadic angular rhyolite lapilli ≤4x2mm. Prolific matrix sheath folds are oblate spheroids ≤3 x 1cm. This unit is ≤ 5cm thick and is orientated sub vertically at ~78°, on a trend of 340°. No evidence of chilled margins.

Matrix supported mLTi, <95% matrix, medium grained cream. Outcrop cut by numerous fractured sheets < 8 cm thick and orientated 152/21. Matrix lapilli are angular, sub rounded aphanitic basalt <5mm x 2mm. Slight deformation of fabric around lapilli.

Matrix supported mLTe, matrix is ≤90%, medium grained, green, friable. Angular mafic lapilli ≤5x3mm, with fabric strongly deformed around them. Considerable lateral variations in matrix welding state over 2m. Ubiquitous basaltic lapilli with lobate margins ≤8mmx 6mm.

Matrix supported mLTi , fine grained, chloritised, ~90% matrix. Contains fiamme streaked out length:width ratio \leq 10:1, maximum length 5cm. Matrix lapilli include angular to sub rounded basalt and sporadic angular mLTe, \leq 1cm x 5mm. Matrix is deformed around lapilli and has a diffuse fabric orientated at 062/85. Outcrop cut by planar sheet like fractures 270/35. Ubiquitous mafic enclaves \leq 1.5cm x 5mm in matrix and outsized fiamme \leq 25 x 5cm with swallow tail terminations, and chloritised interior.

mLTe, matrix is fine grained, cream, \geq 80%, increase in fiamme welding intensity to \leq 25:1, matrix fabric orientated 284/84. Matrix contains reverse graded aphanitic basalt lithic lapilli, which increase from <8mm across (5m) to 2.3cm x 8mm (9m). Cooling joints plunge 3 \rightarrow 058, average spacing of joints <80cm. Matrix fabric deformed strongly around lapilli, and sporadic lobate mafic blebs \leq 1.2cm x 8mm.

Matrix supported mLTi, very fine grained, ~90%, green, chloritised matrix. Contains sub angular basalt lapilli <1cm diameter which matrix is deflected around. Fiamme present in matrix \leq 5cm x8mm length. Matrix has an insipid fabric orientated at 330/70 and poorly developed cooling joints plunging at 15 \rightarrow 270. Sporadic cauliform mafic blebs <1.2cm x 5mm. Matrix fabric is deformed around these blebs.

Height Log 18; 59544 20859 - 59355 21155 Notes 59355 21155 323 Matrix supported mBr ~70%, granular, chloritised matrix containing blocks of sub angular to sub rounded 650000 mBr arkosic sandstone, aphanitic basalt and quartzite ≤18x9cm. Weathering in on surface of exposire of sub 000 50 rounded recesses ≤ 12 x 7cm. Slight coarsening up section to block size ≤24 x14 cm at 323 m. 320 mLT to exp 318 mLT lava like, ≥ 95% matrix, very fine grained, intense folding of cuspate shards into tight and recumbant lava like 22 folds with fold wavelength 3cm. Sheath folds on rock surface are oblate spheroid ≤3 x 1cm. mLTe 315 o exp 294 Matrix supported mLTi, ≥80% fine grained, mid grey, matrix containing angular arkose and quartzite lapilli mLTi 6 <3x1.5 cm. Insipid welded fabric in matrix orientated 102/80. Matrix contains sub rounded quartz crystals ≤ 2mm diameter. Rock friable and highly altered. 277 276 o exp Matrix supported mLT, medium grained ~80% matrix containing chloritised pumice and angular basalt mLT . T. O. 4'0 lapilli ≤ 5cm x 2cm. Lapilli form diffuse, sub linear trails locally 242/59. Matrix contains sporadic mafic 268 enclaves ≤ 1cm x 7mm with cauliform margins. o exp ≥244 242 mLTe S. 2. 23 mLTe increase in matrix welding intensity to <25:1 length : width ratio in chloritised fiamme. Matrix is >85%, o exp 59355 20997 medium grained, highly altered, pumiceous, grey and has an intense fabric orientated 288/85. Contains 240 mLTe sporadic basaltic lapilli ≤ 5x3mm. Sporadic, chloritised, mafic enclaves ≤8x4mm are evident in the matrix. 014(* 10)7 Matrix supported mLT, ~80%, medium grained, chloritised matrix containing chloritised pumice and black angular basalt lapilli ≤ 3x 2cm. Diffuse fabric of sub linear lapilli trails 142/30. mI T mLTi, matrix ≥80%, fine grained, mid-grey with slight coarsening upwards. Contains lapilli of angular mLTi arkosic sandstone and aphanitic basalt ≤1.2 cm x 8mm, and sub rounded quartz crystals ≤ 2mm diameter. 210 Welded fabric in matrix orientated at 342/80, mLTe, matrix supported. Increase in welding intensity to ≤25:1 and laterally discontinous black pumiceous mLTe fiamme streaks. Locally folding of cuspate shards into tight and recumbant folds, which change to a laterally continuous planar fabric over 0.5m. Matrix fabric is fabric orientated 320/78. 190 mLTi mLTi decrease in welding intensity over 2m to ≤15:1. Matrix supported ≥90%, fine grained, grey. Matrix 180 contains angular basalt lapilli ≤1cm x8mm and has a eutaxitic fabric locally orientated at 320/78. ml Te Increase in welding intensity to ≤ 25:1, highly streaked former pumice fiamme with occasional swallow tails. 135 59469 20912 mLTi Matrix supported mLTi, ≥ 80%, mid grey, medium grained matrix containing angular, basaltic lapilli <5mm across and sporadic, lobate, mafic blebs ≤5x3mm. Former pumiceous chloritised fiamme have ≤10:1 length to width ratio. mLTi - 128 - 125 Matrix supported mLTe, ≥ 80%, medium grained, mid grey matrix containing lapilli of mLTi and arkosic 3 sandstone ≤ 1.2cm x 6mm, and sporadic sub rounded quartz crystals ≤ 2mm. Matrix eutaxitic fabric is mLTe orientated at 164/79 and deformed strongly around lapilli. Sporadic mafic blebs in matrix with lobate margins ≤1.2 cm x 5mm L 118 59471 20895 no exp mLT lava 102 like mLT lava like, ≥95%, fine grained, orange, matrix containing angular basaltic lapilli ≤8x4mm. Matrix has 59489 20888 220 intense planar fabric deformed into recumbant, ptygmatic, sheath and tight folds with fold wavelengths ≤ mLT 91 86 10 cm. Matrix supported mLT, ~60% medium grained matrix, friable containing angular lapilli of aphanitic basalt and 00 mLT B 8 82 mLTi ≤ 3cm x 1.5cm. Weak matrix fabric evident orientated at 330/88 with chloritised sub-rounded pumices ≤ no exc 1.2 cm diameter. 75 Matrix supported mBr. ~60%, granular, chloritised matrix. In places matrix has insipid fabric orientated at 200 0.50 38 mBr 72 350/82 and sub linear highly diffuse trails of pumices and angular arkose ≤ 15x8cm. Sporadic matrix, mafic no exp blebs with lobate margins ≤1cm x 4 mm. 65 mBr 59510 20870 Clast supported mBr containing angular blocks of rhyolite lava and mLTe ≤10cm x8cm. Breccia coarsening up 00 55 section to ≤14 x10cm at 56m height. Contact with underlying mLTe is undulatory and erosive mLTe mLTe with reduction in welding intensity length:width ratio of fiamme ≤15:1 mLTe Matrix supported mLTe, ≥80%, medium grained, grey matrix containing sporadic sub rounded quartz L 40 crystals ≤ 2mm diameter, and lapilli of aphanitic basalt ≤ 8x 6mm. Eutaxitic fabric orientated at 154/78 and deformed strongly around lapilli. Sporadic euhedral matrix pyrite. 23 Matrix supported mLTe, ≥90%, fine grained, mid grey matrix containing sporadic, sub rounded, chloritised, mLTe pumice and aphanitic basalt lapilli ≤6mm x 4mm. Eutaxitic fabric is deformed strongly around these lapilli. 59544 20859 15 Matrix fabric largely planar and orientated 054/59. The unit slightly coarsens up with increase in lithic lapilli no exo to ≤1.5cm diameter at 22m height. L 0m ne med coarse lapili small large block block ash≤2mm 2s64 64≤256 >256m mm mm

5 METHODOLOGY U/PB ZIRCON DATING FOR ALLT NAN SUIDHEACHAN MLTI (NIGL FACILITY, BRITISH GEO-LOGICAL SURVEY, KEYWORTH, NOTTINGHAM, UK)

U/Pb dating of samples was conducted at the NIGL facility, British Geological Survey, Keyworth. Nottingham UK. Zircons were isolated using conventional mineral separation techniques. Prior to isotope dilution thermal ionization mass spectrometry (ID-TIMS) analyses zircons were subject to a modified version of the chemical abrasion technique (Mattinson, 2005). U-Pb ID-TIMS analyses herein utilized the EARTHTIME ²⁰⁵Pb-²³³U-²³⁵U (ET535) tracer solution. Measurements at the NERC Isotope Geosciences Laboratory were performed on a Thermo Triton TIMS. Pb analyses were measured in dynamic mode on a MassCom SEM detector and corrected for 0.14 ± 0.04 %/u. mass fractionation. Linearity and dead-time corrections on the SEM were monitored using repeated analyses of NBS 981 and U500. Uranium was measured in static Faraday mode on 10¹¹ ohm resistors or for signal intensities <15 mV, in dynamic mode on the SEM detector. Uranium was run as the oxide and corrected for isobaric interferences with an $^{18}O/^{16}O$ composition of 0.00205 (IUPAC value and determined through direct measurement at NIGL). Single analysis U-Pb dates and uncertainties were calculated using the algorithms of Schmitz and Schoene [2007].

6 GEOCHEMICAL DATA

Figure S11: Total alkali versus silica diagram for Kilchrist basalts and mafic enclaves within mLT matrix. Modified from Emeleus and Bell [2005].

Figure S12: Compositional plots of representative mBr, mLT, mLTi, mLTe and mLT lava-like area matrix scans together with samples of mafic enclaves within mLTe matrix, and granitic xenoliths from within a basaltic dyke on Ben Suardal.

mLTacc groundmass area scans

Figure S13: Compositional plots of representative fissure fed tuff, stratified tuff (//sT) and accretionary lapilli bearing massive lapilli tuff (mLTacc).

Sample	*			Compositional	Parameters				
Sample		Th/U^{\dagger}	206 Pb* (×10 ⁻¹³ mol) [‡]	²⁰⁶ Pb* (mol%) [‡]	Pb*/Pbc	Pbc (pg) [‡]	²⁰⁶ Pb/ ²⁰⁴ Pb [§]		
	z1	0.8	0.0262	90.00	2.9	0.24	180		
	z2	0.85	0.0251	88.90	2.7	0.26	163		
SD-BS-01	z3	0.87	0.0436	92.50	4.1	0.29	243		
	z4	0.87	0.0299	87.60	2.4	0.35	146		
	z5	0.87	0.0327	90.50	3.2	0.28	190		
	z1	0.99	0.1777	84.80	1.9	2.63	119		
SD-ANS-01	z2	0.83	0.1758	85.30	1.9	2.52	123		
	z4	0.85	0.0858	87.20	2.3	1.04	142		
Sample	*			Radio	genic Isotope H	latios			
Sampio		²⁰⁸ Pb/ ²⁰⁶ Pb¶	²⁰⁷ Pb/ ²⁰⁶ Pb¶	% err**	²⁰⁷ Pb/ ²³⁵ U¶	% err**	²⁰⁶ Pb/ ²³⁸ U	% err**	corr. coef.
	z1	0.261	0.04813	6	0.058388	6.4	0.008798	0.7	0.59
	z2	0.285	0.04939	6.7	0.060007	7.1	0.008812	0.7	0.6
SD-BS-01	z3	0.282	0.04771	4.3	0.057659	4.6	0.008765	0.5	0.65
	z4	0.29	0.04897	7.5	0.05945	7.9	0.008805	0.7	0.69
	z5	0.286	0.04824	5.6	0.058331	6	0.008771	0.6	0.65
SD-ANS-01	z1	0.319	0.04758	9.2	0.057278	9.8	0.008731	0.6	0.93
	z2	0.268	0.04772	8.9	0.057368	9.5	0.008719	0.6	0.9
	z4	0.276	0.04791	7.6	0.057811	8.1	0.008751	0.6	0.88
Sample*				Isotopic	Ages				
Sample		²⁰⁷ Pb/ ²⁰⁶ Pb*	\pm^{**}	²⁰⁷ Pb/ ²³⁵ U*	\pm^{**}	²⁰⁶ Pb/ ²³⁸ U*	±**		
	z1	102.4	141.8	57.6	3.6	56.5	0.4		
	z2	163.1	156.2	59.2	4.1	56.6	0.4		
SD-BS-01	z3	81.8	102.1	56.9	2.5	56.3	0.3		
	z4	143.3	175	58.6	4.5	56.6	0.4		
	z5	107.6	132.8	57.6	3.4	56.4	0.3		
	z1	75.2	219.6	56.6	5.4	56.1	0.3		
SD-ANS-01	z2	82.2	211.9	56.6	5.2	56	0.4		
	z4	91.7	180.5	57.1	4.5	56.2	0.3		

Table S4: CA-ID-TIMS data for analysed zircons.

* z1, z2 etc. are labels for fractions composed of single zircon grains or fragments; all fractions annealed and chemically abraded after Mattinson [2005].

[†] Model Th/U ratio calculated from radiogenic ²⁰⁸Pb/²⁰⁶Pb ratio;

[‡] Pb* and Pbc represent radiogenic and common Pb, respectively; mol % ²⁰⁶Pb* with respect to radiogenic, blank and initial common Pb. [§] Measured ratio corrected for spike and fractionation only. Daly analyses, based on analysis of NBS-981 and NBS- 982.

[¶] Corrected for fractionation, spike, and common Pb; up to 1 pg of common Pb was assumed to be procedural blank: ${}^{206}\text{Pb}/{}^{204}\text{Pb} = 18.60 \pm 0.80 \%$; ${}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.69 \pm 0.32 \%$; ${}^{208}\text{Pb}/{}^{204}\text{Pb} = 38.51 \pm 0.74 \%$ (all uncertainties 1-sigma). Excess over blank was assigned to initial common Pb.

** Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene [2007].

* Calculations are based on the decay constants of Jaffey et al. [1971].

Table S5: CO₂ flux calculations resulting from decarbonation reactions and direct melting of dolostone country rock.

Aerial extent of dolostone outcrop (pre-volcanic episode) is ~31 km² (Figure 2 main text)
Cumulative thickness of Strath Suardal Formation = 530 m Ben Suardal Member (BSIL) ~170 m thick Dark grey dolostone (SSIL) ~85 m thick. This unit is recorded as having up to three repetitions [BGS 2005] Mid- dark grey dolostone Kilchrist Member (KiLI) ~35 m thick Pale grey, well bedded, Lonachan Member (LonL) 140 m thick Total thickness estimated to include 3× SSIL repetitions.
To convert volume of limestone (proxy for dolostone) in to mass (kg)
1 m^3 of limestone = 2711 kg $1000 \text{ m}^3 \text{ (km}^3\text{)} = 2711000 \text{ kg}$
Percentage estimates volume of dolostone assimilated during KVF episode and resultant CO_2 mass flux
30 % consumption: $31000000\text{m}^2 \times 159\text{m} = 4.9 \times 10^9\text{m}^3 = 4.9 \times 10^6\text{km}^3$ 50 % consumption: $31000000\text{m}^2 \times 265\text{m} = 8.2 \times 10^9\text{m}^3 = 8.2 \times 10^6\text{km}^3$ 80 % consumption: $31000000\text{m}^2 \times 424\text{m} = 1.31 \times 10^{10}\text{m}^3 = 1.33 \times 10^7\text{km}^3$
Converted volume of dolostone to total mass
$30 \%: 4.9 \times 10^{6} \text{ km}^{3} \times 2711000 = 1.34 \times 10^{13} \text{ kg}$ $50 \%: 8.2 \times 10^{6} \text{ km}^{3} \times 2711000 = 2.23 \times 10^{13} \text{ kg}$ $80 \%: 1.33 \times 10^{7} \text{ km}^{3} \times 2711000 = 3.56 \times 10^{13} \text{ kg}$
Range of calculated CO_2 flux measured in Giga tons (Gt) for different percentages of assimilated dolostone consumed during KVF producing eruptions. 1 kg of limestone produces 239 g CO_2 [Ganino et al. 2013]
30 %: 1.34×10^{13} kg × $0.239 = 3.19 \times 10^{12}$ kg of CO ₂ = $(3.19 \times 10^9 \text{ mt}) = 3.9$ Gt 50 %: 2.23×10^{13} kg × $0.239 = 5.32 \times 10^{12}$ kg of CO ₂ = $(5.32 \times 10^9 \text{ mt}) = 5.32$ Gt 80 %: 3.56×10^{13} kg × $0.239 = 8.52 \times 10^{12}$ kg of CO ₂ = $(8.52 \times 10^9 \text{ mt}) = 8.52$ Gt

Table S6: CH₄ flux calculations resulting from contact metamorphism and dehydration of organic rich Lower Jurassic Shale

50 % of total thickness of Pabay Shales and Broadford Beds ~200 m Total area of above which surrounds composite sills and other intrusions = 18 km^2 (18 000 000 m²), Total volume of shale = $18000000 \times 200 = 3.6 \times 10^9 \text{ m}^3$ (Figure 2 main text) Total volume of shale = m^3 $(100 \%) 200 \times 18000000 = 7.2 \times 10^9 \text{ m}^3$ $(80 \%) 160 \times 18000000 = 5.8 \times 10^9 \text{ m}^3$ $(50 \%) 80 \times 18000000 = 3.6 \times 10^9 \text{ m}^3$ $(30 \%) 60 \times 18000000 = 2.16 \times 10^9 \text{ m}^3$ 1 m^3 of shale = 2675 kg $1000 \,\mathrm{m}^3 \,\mathrm{(km^3)} = 2675000 \,\mathrm{kg}$ $100 \text{ kg CH}_4 = \text{per kg m}^{-3}$ Total mass of shale kg $(100 \%) = (7 \times 10^9 \text{ m}^3) \times 2675000 = 1.93 \times 10^{16} \text{ kg}$ $(80 \%) = (5.6 \times 10^9 \text{ m}^3) \times 2675000 = 1.54 \times 10^{16} \text{ kg}$ $(50 \%) = (3.5 \times 10^9 \text{ m}^3) \times 2675000 = 9.33 \times 10^{15} \text{ kg}$ $(30 \%) = (2.1 \times 10^9 \text{ m}^3) \times 2675000 = 5.78 \times 10^{15} \text{ kg}$ 130 CH₄ (kg) driven off per kg m⁻³. $(100 \%) = (1.93 \times 10^{16} \text{ kg}) / 130 = 1.48 \times 10^{14} \text{ kg}$ $(80 \%) = (1.54 \times 10^{16} \text{ kg}) / 130 = 1.19 \times 10^{14} \text{ kg}$ $(50 \%) = (9.33 \times 10^{15} \text{ kg}) / 130 = 7.41 \times 10^{13} \text{ kg}$ $(30 \%) = (5.78 \times 10^{15} \text{ kg}) / 130 = 4.44 \times 10^{13} \text{ kg}$ As Gt (1Kg = $1.0 \times 10-12$ Gt) – CH₄ driven off one side of intrusive sheet following contact metamorphism and dehydration $(100 \%) = 1.48 \times 10^{14} \text{ kg} = 148 \text{ Gt}$ $(80 \%) = 1.19 \times 10^{14} \text{ kg} = 119 \text{ Gt}$ $(50 \%) = 9.32 \times 10^{13} \text{ kg} = 74.1 \text{ Gt}$ $(30 \%) = 5.62 \times 10^{13} \text{ kg} = 44.4 \text{ Gt}$ CH₄ driven off both sides of intrusive sheet following contact metamorphism and dehydration (100 %) = 296 Gt(80 %) = 237 Gt

(50 %) = 148 Gt (30 %) = 88.9 Gt

7 ADDITIONAL TEXT ON PALEOCENE GEOLOGY OF SKYE

The Cuillin Central Complex has been sub-divided, in age of emplacement from oldest to youngest, into the Cuillin Centre, the Srath na Creitheach Centre, the Western Red Hills (WRH) Centre, and the Eastern Red Hills (ERH) Centre Emeleus and Bell 2005]. The Cuillin Centre is typically gabbroic, and comprises plutonic bodies, with minor intrusions including arcuate 'cone-sheets'. Pegmatitic veins in Cuillin Centre gabbro have been dated at 58.91± 0.08 Ma [Hamilton et al. 1998]. The Coire Uaigneich Granite [59.3 ± 0.7 Ma, Dickin 1981], crops out adjacent to the SE Cullin Centre margin. The Srath na Creithach Centre comprises granitic intrusions and volcaniclastic rocks. The Western Red Hills Centre typically comprises granitic plutons and mixed magma intrusions, with the Loch Ainort Granite having been dated at 58.58 ± 0.13 Ma [Chambers and Pringle 2001]. The Eastern Red Hills Centre typically comprises granitic intrusions, although gabbroic units are also present [Bell 1966; 1976; Emeleus and Bell 2005]. The Eastern Red Hills Centre has been sub-divided into two suites: 1) the older Outer Granite comprising granite intrusions forming the hills of Glas Beinn Mhor, Beinn na Cro, Beinn an Dubhaich, and east of Beinn na Caillich to Creag Strollamus, together with the Beinn na Cro and Broadford gabbros and; 2) the younger Inner Granite comprising the granite intrusions forming Beinn na Caillich, Beinn Dearg Mhor and Beinn Dearg Bheag (Figure 2). The Beinn an Dubhaich Granite has been dated at 55.89 ± 0.15 Ma [M. A. Hamilton, in Emeleus and Bell 2005, whilst a pitchstone dyke cross-cutting the Beinn na Caillich Granite has been dated at 55.7 ± 0.1 Ma [M. A. Hamilton, in Emeleus and Bell 2005]. Emplacement of the Beinn an Dubhaich Granite formed a well-developed contact aureole in surrounding Cambro-Ordovician country rock [Holness 1992].

COPYRIGHT NOTICE

© The Author(s) 2022. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

REFERENCES

- Andrews, G. D. M. and M. J. Branney (2011). "Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey's Landing, southern Idaho". *Geological Society of America Bulletin* 123(3–4), pages 725–743. ISSN: 1943-2674. DOI: 10.1130/b30167.1.
- Bell, B. R., I. T. Williamson, F. E. Head, and D. W. Jolley (1996). "On the origin of a reddened interflow bed within the Palaeocene lava field of north Skye". Scottish Journal of Geology 32(2), pages 117–126. DOI: 10.1144/sjg32020117.
- Bell, B. R. and J. W. Harris (1986). An excursion guide to the geology of the Isle of Skye. Geological Society of Glasgow. ISBN: 0902892088.

- Bell, B. R. and I. T. Williamson (1994). "Picritic basalts from the Palaeocene lava field of west-central Skye, Scotland: evidence for parental magma compositions". *Mineralogical Magazine* 58(392), pages 347–356. DOI: 10.1180/minmag. 1994.058.392.01.
- Bell, J. D. (1966). "XIII.—Granites and Associated Rocks of the Eastern Part of the Western Redhills Complex, Isle of Skye". Transactions of the Royal Society of Edinburgh 66(13), pages 307–343. ISSN: 2053-5945. DOI: 10.1017/ s0080456800023632.
- (1976). "The Tertiary intrusive complex on the Isle of Skye". *Proceedings of the Geologists' Association* 87(3), pages 247-271. DOI: 10.1016/s0016-7878(76)80001-6.
- Bierwith, P. N. (1982). "Experimental welding of volcanic ash". Master's thesis. Monash University.
- Branney, M. J. and P. Kokelaar (1992). "A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite". Bulletin of Volcanology 54(6), pages 504–520. ISSN: 1432-0819. DOI: 10.1007 / bf00301396.
- (2002). "Pyroclastic Density Currents and the Sedimentation of Ignimbrites". 27(1). DOI: 10.1144/gsl.mem.2003.027.
- Breitkreuz, C. (2013). "Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks". *Bulletin of Volcanology* 75(4). DOI: 10.1007/s00445-013-0705-6.
- British Geological Survey (BGS) (2005). *Skye Central Complex, Scotland, Bedrock.* 1:25000British Geology Series. Keyworth, Nottingham, British Geological Survey.
- Brown, D. J. and B. R. Bell (2007). "How do you grade peperites?" Journal of Volcanology and Geothermal Research 159(4), pages 409–420. ISSN: 0377-0273. DOI: 10. 1016/j.jvolgeores.2006.08.008.
- (2013). "The emplacement of a large, chemically zoned, rheomorphic, lava-like ignimbrite: the Sgurr of Eigg Pitchstone, NW Scotland". Journal of the Geological Society 170(5), pages 753–767. ISSN: 2041-479X. DOI: 10.1144/ jgs2012–147.
- Brown, R. J., M. J. Branney, C. Maher, and P. Davila-Harris (2010). "Origin of accretionary lapilli within groundhugging density currents: Evidence from pyroclastic couplets on Tenerife". *Geological Society of America Bulletin* 122(1-2), pages 305–320. DOI: 10.1130/b26449.1.
- Chambers, L. M. and M. S. Pringle (2001). "Age and duration of activity at the Isle of Mull Tertiary igneous centre, Scotland, and confirmation of the existence of subchrons during Anomaly 26r". *Earth and Planetary Science Letters* 193(3-4), pages 333–345. DOI: 10.1016/s0012-821x(01)00499-x.
- Dickin, A. P. (1981). "Isotope Geochemistry of Tertiary Igneous Rocks from the Isle of Skye, N.W. Scotland". *Journal of Petrology* 22(2), pages 155–189. DOI: 10.1093/petrology/ 22.2.155.
- Duffield, W. A. and G. B. Dalrymple (1990). "The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows". *Bulletin of Volcanology* 52(6), pages 475–487. DOI: 10.1007/bf00268927.

- Eichelberger, J. C. (1980). "Vesiculation of mafic magma during replenishment of silicic magma reservoirs". *Nature* 288(5790), pages 446–450. ISSN: 1476-4687. DOI: 10.1038/ 288446a0.
- Emeleus, C. H., E. A. Alluright, A. C. Kerr, and I. T. Williamson (1996). "Red tuffs in the Palaeocene lava successions of the Inner Hebrides". *Scottish Journal of Geology* 32(1), pages 83–89. DOI: 10.1144/sjg32010083.
- Emeleus, C. H. and B. R. Bell (2005). The Palaeogene volcanic districts of Scotland. Volume 3. British Geological Survey Nottingham.
- Folch, A. and J. Martí (1998). "The generation of overpressure in felsic magma chambers by replenishment". *Earth and Planetary Science Letters* 163(1-4), pages 301–314. DOI: 10. 1016/s0012-821x(98)00196-4.
- Freundt, A. (1999). "Formation of high-grade ignimbrites Part II. A pyroclastic suspension current model with implications also for low-grade ignimbrites". *Bulletin of Volcanology* 60(7), pages 545–567. DOI: 10.1007/s004450050251.
- Ganino, C., N. T. Arndt, C. Chauvel, A. Jean, and C. Athurion (2013). "Melting of carbonate wall rocks and formation of the heterogeneous aureole of the Panzhihua intrusion, China". *Geoscience Frontiers* 4(5), pages 535–546. ISSN: 1674-9871. DOI: 10.1016/j.gsf.2013.01.012.
- Hamilton, M. A., D. G. Pearson, R. N. Thompson, S. P. Kelley, and C. H. Emeleus (1998). "Rapid eruption of Skye lavas inferred from precise U–Pb and Ar–Ar dating of the Rum and Cuillin plutonic complexes". *Nature* 394(6690), pages 260– 263. ISSN: 1476-4687. DOI: 10.1038/28361.
- Holness, M. B. (1992). "Metamorphism and Fluid Infiltration of the Calc-silicate Aureole of the Beinn an Dubhaich Granite, Skye". Journal of Petrology 33(6), pages 1261–1293. DOI: 10.1093/petrology/33.6.1261.
- Jaffey, A. H., K. F. Flynn, L. E. Glendenin, W. C. Bentley, and A. M. Essling (1971). "Precision Measurement of Half-Lives and Specific Activities of 235U and 238U". *Physical Review C* 4(5), pages 1889–1906. DOI: 10.1103/physrevc.4.1889.
- Lofgren, G. (1974). "An experimental study of plagioclase crystal morphology isothermal crystallization". *American Journal of Science* 274(3), pages 243–273. DOI: 10.2475/ajs. 274.3.243.
- Mattinson, J. M. (2005). "Zircon U–Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages". *Chemical Geology* 220(1-2), pages 47–66. DOI: 10.1016/j.chemgeo.2005.03.011.
- Moore, J. G. and D. L. Peck (1962). "Accretionary Lapilli in Volcanic Rocks of the Western Continental United States". *The Journal of Geology* 70(2), pages 182–193. DOI: 10. 1086/626807.
- Pioli, L. and M. Rosi (2005). "Rheomorphic structures in a high-grade ignimbrite: the Nuraxi tuff, Sulcis volcanic dis-

trict (SW Sardinia, Italy)". *Journal of Volcanology and Geothermal Research* 142(1-2), pages 11–28. DOI: 10.1016/j.jvolgeores.2004.10.011.

- Riehle, J. R. (1973). "Calculated Compaction Profiles of Rhyolitic Ash-Flow Tuffs". *Geological Society of America Bulletin* 84(7), page 2193. DOI: 10.1130/0016-7606(1973) 84<2193:ccpora>2.0.co;2.
- Riehle, J. R., T. F. Miller, and R. A. Bailey (1995). "Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model". *Bulletin of Volcanology* 57(5), pages 319– 336. DOI: 10.1007/bf00301291.
- Ross, C. S. and R. L. Smith (1961). *Ash-flow tuffs: Their origin, geologic relations, and identification*. DOI: 10.3133/pp366. Professional Paper 366.
- Russell, J., D. Giordano, and D. Dingwell (2003). "Hightemperature limits on viscosity of non-Arrhenian silicate melts". *American Mineralogist* 88(8–9), pages 1390–1394. ISSN: 0003-004X. DOI: 10.2138/am-2003-8-924.
- Schmitz, M. D. and B. Schoene (2007). "Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data". *Geochemistry, Geophysics, Geosystems* 8(8). ISSN: 1525-2027. DOI: 10. 1029/2006gc001492.
- Smith, S., A. Billi, and G. di Toro (2010). "Principal Slip Zones in Carbonate: Microstructural Characterization and Implications for the Seismic Cycle". EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, page 8722.
- Sparks, S. R. J., H. Sigurdsson, and L. Wilson (1977). "Magma mixing: a mechanism for triggering acid explosive eruptions". *Nature* 267(5609), pages 315–318. ISSN: 1476-4687. DOI: 10.1038/267315a0.
- Thordarson, T. (2004). "Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: a record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau". *Geological Society, London, Special Publications* 229(1), pages 275–306. DOI: 10.1144/gsl.sp.2004.229.01.16.
- Troll, V. R., C. H. Donaldson, and C. H. Emeleus (2004). "Preeruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland". *Contributions to Mineral*ogy and Petrology 147(6), pages 722–739. ISSN: 1432-0967. DOI: 10.1007/S00410-004-0584-0.
- White, J. D. L., J. McPhie, and I. Skilling (2000). "Peperite: a useful genetic term". Bulletin of Volcanology 62(1), pages 65–66. ISSN: 1432-0819. DOI: 10.1007 / s004450050293.
- Wilson, C. J. N. and G. P. L. Walker (1985). "The Taupo eruption, New Zealand I. General aspects". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 314(1529), pages 199–228. DOI: 10.1098/rsta.1985.0019.